Characterization of a Drought-Inducible Dehydrin Promoter from Sugarcane (Saccharum officinarum L.) in Tobacco (Nicotiana tabacum L.)

  • Hayati Minarsih Iskandar Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor 16128, Indonesia
  • Sonny Suhandono Genetics and Molecular Biology Division, School of Life Science and Technology, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung, Indonesia
  • Jembar Pambudi Department of Biochemistry, Bogor Agricultural Institute. Jl. Meranti, Kampus IPB Dramaga, Bogor 16680
  • Tati Kristianti Indonesian Institute of Education (IPI), Jl. Terusan Pahlawan No. 83, Garut 44151, Indonesia
  • Riza Arief Putranto Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor 16128, Indonesia
  • Windi Mose Indonesian Research Institute for Biotechnology and Bioindustry, Jl. Taman Kencana No. 1, Bogor 16128, Indonesia
  • Sustiprijatno Sustiprijatno Indonesian Center for Agricultural Biotechnology and Genetic Resource Research and Development, Jl. Tentara Pelajar No. 3A, Bogor 16111, Indonesia
Keywords: drought stress, dehydrin, DHN, promoter study, sugarcane, tobacco

Abstract

Dehydrin (DHN) is known to play an important role in plant response and adaptation to abiotic stresses (drought, high salinity, cold, heat, etc.). Previous research reported the increased expression of DHN in sugarcane stems exposed to drought stress for 15 days which may be controlled by its corresponding stress inducible promoter. The DHN promoter was succesfully isolated from sugarcane variety PSJT 941 (Pr-1DHNSo) and was cloned to pBI121 expression vector fused to a β-glucuronidase (GUS) reporter gene.  The aim of this research was the functional testing of the Pr-1DHNSo promoter through transformation into tobacco plant treated with in vitro drought stress. Genetic transformation of Pr-1DHNSo construct was conducted by Agrobacterium tumefaciens. The transformed tobacco was then subjected to drought stress treatment using 40% PEG 6000  for five sequential incubations (0, 12, 24, 48 and 72 hours). The GUS assay reveal that the transformed tobacco treated with drought stress showed a blue color denoting GUS activity in leaf, stem and root tissues and this expression increased along with the length of the drought treatment. The analysis of gusA gene using real time-qPCR normalized to the L25 reference gene also showed that the expression increased in line with the length of time of drought stress.  The results presented in this study indicated that the Pr-1DHNSo promoter from sugarcane was expressed and induced by drought stress treatment in tobacco.

References

Allahverdiyev, T. I. (2015). Effect of drought stress on some physiological parameters, yield, yield components of durum (Triticum durum desf.) and bread (Triticum aestivum L.) wheat genotypes. EKIN, Journal of Crop Breeding and Genetics 1, 50–62.
Abbas, S. R., Ahmad, S. D., Sabir, S. M, and Shah, A. H. (2014). Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. Journal of Soil Science and Plant Nutrition 14, 233-243.
Bars, H. D., and Weatherly, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Science 15, 413-428.
Bray, E.A. (1997). Plant responses to water deficit. Review. Trends in Plant Science 2, 48-54.
Ben Amar, S., Safi, H., Malika, A., Azaza, J., Khoudi, H., Mamoudi, K., and Brini, F. (2013). Analysis of the promoter activity of a wheat dehydrin gen (DHN-5) under various stress condition. Australian Journal of Crop Science 7, 1875-1883.
Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11, 113–116.
Chaves, M.M., J.P. Maroco, and J.S. Pereira, 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology 30, 239-264.
Christensen, A. H., and Quail, P. H. (1996). Ubiquitin promoter-based vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research 5, 213–218
Damaj, M. B., Kumpatla, S. P., Emani, C., Beremand, P. D., Reddy, A. S., Rathore, K. S., Buenrostro-Nava, M., Curtis, I. S., Thomas, T. L., and Mirkov, T. E. (2010). Sugarcane DIRIGENT and O-methyl transferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231, 1439–1458
de Souza, W. R., de Oliveira, N. G., Vinecky, F., Ribeiro, A. P., Basso, M. F., das Chagas Noqueli Casari, R. A., da Cunha, B. A. D. B., Duarte, K. E., Santiago, T. R., Martins, P. K., Aucique-Perez, C. E., de Sousa C. A. F., Kobayashi. A. K., Nakashima, K., Yamaguchi-Shinozaki, K., and Molinari, H. B. C. (2018). Field evaluation of AtDREB2A CA overexpressing sugarcane for drought tolerance. Journal of Agronomy and Crop Science 10, 1-9.
Ferreira, T. H. S., Tsunada , M. S., Bassi, D., Araújo, P., Mattiello, L., Giovanna, V. D., Righetto, G. L., Gonçalves, V. R., Lakshmanan, P., and Menossi, M. (2017). Sugarcane water stress tolerance mechanism and its implications on developing biotechnology solutions. Frontiers in Plant Science 8, 1-18.
Hanin, M., F. Brini, C. Ebel, Y. Toda, S. Takeda., and K. Masmoudi. (2011). Plant dehydrins and stress tolerance. Versatile protein for complex mechanisms. Plant Signaling and Behavior 6, 1503-1509.
Hasan, M., Khan, A.J., Khan, S., Shah, A. H., Khan, A. R., and Mirza, B. (2008). Transformation of tomato (Lycopersicon esculentum) with Arabidopsis early flowering gene Apetala (API) through Agrobacterium infiltration of ripened fruits. Pakistan Journal of Botany 40, 161-173.
Ingram, J. and D. Bartels. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 377-403.
Iskandar, H. M., Simpson, R. S., Casu, R. E., Bonnett, G. D., Maclean, D. J., and Manners, J. M. (2004). Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Molecular Biology Reporter 22, 325-337.
Iskandar, H. M., R. E. Casu, A. T. Fletcher, S. Schmidt, J. Xu, D. J. Maclean, J. M. Manners., and G. D. Bonnett. (2011). Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biology 11, 1-14.
Jefferson, R. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter 5, 387-405.
Kelley, W. L. (1999). Molecular chaperones, How J domain turn on Hsp70s. Current Biology 9, R305-R308.
Kumar, T., Khan, M. R., Jan, S. A., Ahmad, N., Ali, N., Zia, M. A., Roomi, S., Iqbal, A., and Ali, G. M. (2014). Efficient regeneration and genetic transformation of sugarcane with AVP1 gene. American-Eurasian Journal of Agricultural & Environmental Sciences 14, 165-171.
Lakshmanan, P., and Robinson, N. (2014). Stress physiology: abiotic stresses In “Sugarcane: Physiology, Biochemistry, and Functional Biology” (P. H. Moore and F. C. Botha, eds.), pp. 411-434. John Wiley and Sons Inc.
Marcos, F. C. C., Silveira, N. M., Marchiori, P. E. R., Machado, E. C., Souza, G. M., Landell, M. G. A., and Ribeiro, R. V. (2018). Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. PLOS One 13, e0206716.
Minarsih, H., Suhandono, S., Faniar., Kritianti, T., Amanah, M., and Sustiprijatno. (2018). Isolation and characterization of Dehydrin gene from sugarcane (Saccharum officinarum L.) involved in drought tolerance response. Menara Perkebunan 2, 116-125.
Minarsih, H., Suhandono, S., Fuadi, A.K., Kristianti, T., Putranto, R. A., Sukmadjaya, D., and Sustiprijatno. (2020). Isolation and characterization of Dehydrin promoter region from sugarcane (Saccharum officinarum L.). Menara Perkebunan, In Press.
Nerkar, G., Thorat, A., Sheelavatmath, S., Kassa, H. B, and Devarumath, R. (2018). Genetic transformation of sugarcane and field performance of transgenic sugarcane In “Biotechnologies of Crop Improvement” (S.S. Gosal, and S.H.Wani, eds.), pp. 207-226. Springer.
Ramiro, D. A., Melotto-Passarin, D. M., de Ameida Barbosa, M., dos Santos, F., Gomez, S. G. P., Júnior, N. S. M., Lam, E, and Carrer, H. (2016). Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnology Journal 14, 1826-1837.
Rampino, P., Pataleo, S., Gerardi, C., Mita, G., and Perrotta, C. (2006). Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell and Environment 29, 2143–2152.
Sade N, Galkin E, Moshelion M. (2015). Measuring Arabidopsis, Tomato and Barley Leaf Relative Water Content (RWC). Bio-protocol 5, 1-4.
Sambrook, J., Fritch, E.F., and Maniatis, T. (1989). “Molecular Cloning: a Laboratory Manual” 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Schmidt G.W. and Delaney, S.K. (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics 283, 233–241. doi 10.1007/s00438-010-0511-1.
Srinivas. L., Sunil, K. G. B., Ganapathy, T. R., Revathi, C. J., Bapat, V. A. (2008). Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicum esculentum L.). Plant Biotechnology 2, 1-6.
Suhandono, S., Apriyanto, A., Ihsani N. (2014). Isolation and characterization of three cassava elongation factor 1 Alpha (MeEF1A) Promoters. PLoS ONE 9, e84692. doi:10.1371/journal.pone.0084692.
Sugiharto, B. (2017). Biotechnology of drought-tolerance sugarcane In “Sugarcane-Technology and Research” ( A. de Oliveira, ed). http:dx.doi.org/10.5772/intechopen.72436.
Published
2020-02-27