The Growth, Fruit Set and Fruit Cracking Incidents of Tomato Under Shade

  • Zulfa Ulinnuha Graduate School of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
  • Muhammad Achmad Chozin Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
  • Edi Santosa Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University (IPB University), Jl. Meranti, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
Keywords: Solanum lycopersicum, flower abortion, intercropping, low irradiance, quality

Abstract

Six tomato genotypes were grown in the field under full sun at 50% reduced light intensity using shading net to evaluate growth, fruit set, and fruit cracking incident. The experiment was conducted during the rainy season in December 2016 to March 2017 in Cikarawang Experimental Station, Bogor, Indonesia. The genotypes tested were sensitive (“Tora” and F7005001-4-1-12-5), tolerant (F7003008-1-12-10-3 and F7003008-1-12-16-2), and shade-loving (SSH-3 and “Apel Belgia”). The results showed 50% shading delayed flowering and harvesting time in all genotypes. Genotype and shading treatments had an independent effect on fruit set. Shaded plants had lower flower abortion and resulted in a higher number of fruits per harvest, except in “Apel Belgia” and “Tora” genotypes. Fruit cracking incidents were low under shading implying the use of shading can increase tomato quality. However, it needs further investigation through using natural shading, e.g., intercropping system before this finding is applied in farmers’ field.

References

[IPGRI] International Plant Genetic Resource Institute. (1996). “Descriptors of Tomato (Lycopersicon spp.)”. IPGRI. Biodiversity International. 44p.
Adeniyi, O.R. (2011). Economic aspects of intercropping systems of vegetables (okra, tomato and cowpea). African Journal of Plant Science 5, 648-655.
Aidawati, N., Hidayat, S.H., Suseno, R., and Sosromarsono, S. (2002). Transmission of an Indonesian isolate of Tobacco leaf curl virus (Geminivirus) by Bemisia tabaci Genn. (Hemiptera: Aleyrodidae). Plant Pathology Journal 18, 231-236.
Ben-Yakir, D., Antignus, Y., Offir, Y., and Shahak, Y. (2012). Colored shading nets impede insect invasion and decrease the incidences of insect‐transmitted viral diseases in vegetable crops. Entomologia Experimentalis et Applicata 144, 249-257.
Bibi, B., Sajid, M., Rab, A., Shah, S.T., Aji, N., Jan, I., Haq, I., Wahid, F., Haleema, B., and Ali, M. (2012). Effect of partial shade on growth and yield of tomato cultivars. Global Journal of Biology, Agriculture & Health Sciences 1, 22-26.
Bing, L., and Ning, Q. (2015). Effects of shading on spatial distribution of flower and flower abscission in field-grown three soybeans in northern China. Emirates Journal of Food and Agriculture 27, 629-635.
Boyd, J.W., and Murray, D.S. (1982). Effects of shade on silverleaf nightshade (Solanum elaeagnifolium). Weed Science 30, 264-269.
Capel, C., Yuste‑Lisbona, F.J., López‑Casado, G., Angosto, T., Cuartero, J., Lozano, R., and Capel, J. (2017). Multi‑environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theoretical and Applied Genetics 130, 213-222.
Degri, M.M., and Samalia, A.E. (2014). Impact of intercropping tomato and maize on the infestation of tomato fruit borer (Helicoverpa armigera). Journal of Agricultural and Crop Research 2, 160-164.
Demmig-Adams, B., and AdamsIII, W.W. (2003). Photosynthesis and partitioning: Photoinhibition. Pp. 707-714. Encyclopedia of Applied Plant Sciences. Doi: 10.1016/B0-12-227050-9/00091-0.
Dorais, M., Demers, D-A., Papadopoulos, A.P., and Ieperen, W.V. (2004). Greenhouse tomato fruit cuticle cracking. Pp. 163-184. In J. Janick (Ed.). Horticulture Review 30. John Wiley & Sons, Inc. doi: 10.1002/9780470650837.ch5.
Dorais, M., Papadopoulos, A.P., and Gosselin, A. (2001). Greenhouse tomato fruit quality. In J. Janick (Ed.). Horticulture Review 26 pp. 239-319.. John Wiley & Sons, Inc. doi: 10.1002/9780470650806.ch5.
Ehret, D.L., Hill, B.D., Raworth, D.A., and Estergaard, B. (2008). Artificial neural network modeling to predict cuticle cracking in greenhouse peppers and tomato. Computers and Electronics in Agriculture 61, 108-116.
Gent, M.P.N. (2007). Effect of degree and duration of shade on quality of greenhouse tomato. HortScience 42, 514-520.
Guichard, S., Bertin, N., Leonardi, C., and Gary, C. (2001). Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21, 385-392. doi: 10.1051/agro:2001131
Huang, Y., Li, Y., and Wen, X. (2011). The effect of relative humidity on pollen vigor and fruit setting rate of greenhouse tomato under high temperature condition. Acta Agriculturae Boreali-occidentalis Sinica 11, 105-110.
Ikeda, T., Sakamoto, Y., Watanabe, S., and Okano, K. (1999). Water relations in fruit cracking of single-truss tomato plants. Environmental Control in Biology 37, 153-158.
Ioannis, C.K., Mahmood, S., and Thanopoulos, C. (2008). Fruit set in Solanaceae vegetable crops as affected by floral and environmental factors. The European Journal of Plant Science and Biotechnology 2, 88-105.
Khadivi-Khub, A. (2015). Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum 37, 1718.
Liebisch, F., Max, J.F.J., Heine, G., and Horst, W.J. (2009). Blossom‐end rot and fruit cracking of tomato grown in net‐covered greenhouses in Central Thailand can partly be corrected by calcium and boron sprays. Journal of Plant Nutrition and Soil Science 172, 140-150. doi: 10.1002/jpln.200800180
Masabni, J., Sun, Y., Niu, G., and del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology 26, 344-350.
Matas, A.J., Lopez-Casado, G., Cuartero, J., and Heredia, A. (2005). Relative humidity and temperature modify the mechanical properties of isolated tomato fruit cuticle. American Journal of Botany 92, 462-468.
Mustafa, M., Syukur, M., Sutjahjo, S.H., and Sobir. (2017). Inheritance of fruit cracking resistance in tomato (Solanum lycopersicum L.). Asian Journal of Agriculture Research 11, 10-17.
Peet, M.M., and Willits, D.H. (1995). Role of excess water in tomato fruit cracking. HortScience 30, 65-68.
Polthanee, A., Promsaena, K., and Laoken, A. (2011). Influence of low light intensity on growth and yield of four soybean cultivars during wet and dry seasons of Northeast Thailand. Agriculture Science 2, 61-67.
Pranoto, H., Chozin, M.A., Arifin, H.S., and Santosa, E. (2013). Analysis social economy characteristic and sustainable agroforestry system at Cisokan catchment area. Pp 624-629. In “Proceeding of National Seminar on Agroforestry 2013: Agroforestry for Food and Better Environment”. Brawijaya University, Malang 21 May 2013, Indonesia.
Roig-Villanova, I., Bou-Torrent, J., Galstyan, A., Carretero-Paulet, L., Portolés, S., Rodríguez-Concepción, M., and Martínez-García, J.F. (2007). Interaction of shade avoidance and auxin responses: A role for two novel atypical bHLH proteins. EMBO Journal 26, 4756-4767.
Russo, V.M. (1993). Shading of tomato plants inconsistently affects fruit yield. HortScience 28, 1133.
Santosa, E., Prawati, U., Sobir, Mine, Y., and Sugiyama, N. (2015). Agronomy, utilization and economics of indigenous vegetables in West Java, Indonesia. Jurnal Hortikultura Indonesia 6, 125-134.
Santosa, E., Sugiyama, N., Hikosaka, S., Takano, T., and Kubota, N. (2005a). Intercropping practices in cacao, rubber and timber plantations in West Java, Indonesia. Japanese Journal of Tropical Agriculture 49, 21-29.
Santosa, E., Sugiyama, N., Nakata, M., and Kawabata, S. (2005b). Profitability of vanilla intercropping in pine forests in West Java, Indonesia. Japanese Journal of Tropical Agriculture 49, 207-214.
Santosa, E., Sugiyama, N., Nakata, M., and Lee, O.N. (2006). Growth and corm production of Amorphophallus at different shading levels in Indonesia. Japanese Journal of Tropical Agriculture 50, 87-91.
Sato, S., Peet, M.M., and Thomas, J.F. (2002). Determining critical pre and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany 53, 1187-1195.
Sorrentino, G., Cerio, L., and Alvino, A. (1997). Effect of shading and air temperature on leaf photosynthesis, fluorescence and growth in lily plants. Scientia Horticulturae 69, 259-273.
Sulistyowati, D., Chozin, M.A., Syukur, M., Melati, M., and Guntoro, D. (2016). Selection of shade tolerant tomato genotypes. Journal of Applied Horticulture 18, 154-159.
Teitel, M., Liron, O., Haim, Y., and Seginer, I. (2008). Flow through inclined and concertina-shape screens. Acta Horticulturae 801, 99-106.
Ulinnuha, Z., Chozin, M.A., and Santosa, E. 2019. Yield stability and disease incident on six tomato genotypes under shading. Jurnal Hortikultura Indonesia 10, 10-19.
Upadhyay, K.P., Sharma, M.D., Shakya, S.M., Ortiz-Ferrara, G., Tiwari, T.P., and Sharma, R.C. (2010). Performance and profitability study of baby corn and tomato intercropping. Pakistan Journal of Agricultural Sciences 47, 183-193.
Wahyuni, S., Yunianti, R., Syukur, M., Witono, J.R., and Aisyah, S.I. (2014). Resistance of 25 tomato genotypes (Solanum lycopersicum Mill.) to fruit cracking and its correlations to other characters. Jurnal Agronomi Indonesia 42, 195-202.
Yulianti, N., Santosa, E., and Susila, A.D. (2018). Production of fruits and leafy vegetables Solanum nigrum Linn under different shade levels. Journal of Tropical Crop Science 5, 64-72.
Published
2020-07-05