Growth, Production and Bioactive Content of Several Black Cumin (Nigella sativa L.) Accessions With Different Harvesting Times in a D3 Type Climate Regime

  • Septian Dwi Cahyo Master Program of Postgraduate School, IPB University, Bogor 16680, Indonesia.
  • Ani Kurniawati Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Dramaga, Bogor 16680, Indonesia
  • Didah Nur Faridah Department of Food Science and Technology, Faculty of Agriculture Technology, IPB University, Dramaga, Bogor 16680, Indonesia
  • Munif Ghulamahdi Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Dramaga, Bogor 16680, Indonesia
Keywords: Indonesia, tropical, thymoquinone, thymol, habbatus sauda

Abstract

Black cumin (Nigella sativa L.) is a species Ranunculaceae family which grows in the Middle Eastern and Southern Mediterranean countries. Black cumin is also known as habbatus sauda , or kalonji in South Asia. Black cumin seeds are used as spice traditional medicine; the essential oil compound in the seeds has been identified as thymoquinone. Thymoquinone has a potent antioxidant effect, which could protect organs from oxidative damage by generating free radical agents. Indonesia is one of the most geographically diverse country in the world. Some regions have scattered low and high plains, abundant sunlight, evenly distributed rainfall throughout the year, and highly diverse soil types. The purpose of this study was to study the growth, production, thymoquinone and thymol content of several accessions of black cumin with different harvesting time in D3 type climate regimes. The research was conducted from April to September 2019 in Ngadirejo Village, Sukapura District, Probolinggo Regency, East Java with an altitude of 1.680 m above sea level. The experiment used a randomized complete block design with one factor for the vegetative phase, namely accession (“American”, “Indian”, “Kuwait”, and “Slovenian”) and two factors for the generative phase, namely accession and harvesting time. The harvesting time of black cumin was conducted at 6, 7, and 8 weeks after the anthesis. “Indian” and “Slovenian” accession demonstrated the best vegetative growth, whereas “Indian” had the highest capsules number per plant, seeds weight per plant, and the highest estimated production compared to other accessions (603 kg seeds. ha-1). “American”, “Indian” and “Kuwait” accessions are well adapted in D3 type climate. The harvesting time of 7 to 8 weeks from anthesis was shown to be optimal for all accessions. Thymoquinone and thymol content for the four accessions was circa 349.64– 3,030.45 μg. g-1 of seeds and 385.56 – 2,003.46 μg.g-1 of seeds, with potential production values of 0.18 - 1.83 kg.ha-1 and 0.19 - 0.45 kg.ha-1, respectively. The optimal harvesting time to maximize seed production was unaffected by the black cumin accession.

References

Abdelmalek, M., Moussa, A., Noureddine, D., and Saad, A. (2012). Antibacterial activity of honey alone and in combination with Nigella sativa seeds against Pseudomonas aeruginosa infection. Asian Pasific Journal of Tropical Disease 2, 428-430.
Al Asad, F. (2019). “Kajian Pemanfaatan FMA dan Pengurangan Pupuk N, P untuk Meningkatkan Pertumbuhan, Produksi, dan Kadar Metabolit Jintan Hitam (Nigella sativa L.)”. [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Alowaiesh, B., Singh, Z., Fang, Z., and Kailis, S.G. (2018). Harvest time impacts the fatty compositions, phenolic compounds and sensory attributes of frantoio and manzanilla olive oil. Scientia Horticulturae 234, 74-80.
Assefa, E., Alemayehu A., and Mamo, T. (2015). Adaptability study of black cumin (Nigella sativa L.) varieties in the mid and high land areas of Kaffa zone, South West Ethiopia. Agriculture Forestry and Fisheries 4,14–17.
Balakrishnan, B.R. and Gupta, P. (2011). Effect of pre-sowing seed treatment with kinetin on physiological parameters of Nigella sativa Linn. International Journal of Pharmacy and Life Sciences 2, 1046-1049.
Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwart, A., Joel, D.M., Lev, E., Fait, and A., Lewinsohn, E. (2012). Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules 17, 10159-10177.
Bourgou, S., Ksouri, R., Bellila, A., Skandrani, I., Falleh, H., and Marzouk, B. (2008). Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. Comptes Rendus Biologies 331,48–55.
Buhaira, S., Nusifera, P.I., Ardiyaningsih, and Alia, Y. (2014). Penampilan dan parameter genetik beberapa karakter morfologi agronomi dari 26 aksesi padi (Oryza spp L.) lokal Jambi. Jurnal Penelitian Universitas Jambi Seri Sains 39,1– 15.
Destiawan, N. (2019). “Identifikasi Morfologi, Agronomi, dan Profil Metabolit Beberapa Aksesi Jintan (Nigella sp.).“ [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Fahmy, H.M., Noor, N.A., Mohammed, F.F., Elsayed, A.A., and Radwan, N.M. (2014). Nigella sativa as an anti-inflammatory and promising remyelinating agent in the cortex and hippocampus of experimental autoimmune encephalomyelitis-induced rats. The Journal of Basic & Applied Zoology 67, 182-195.
Ghamarnia, H., Khosravy, H., and Sepehri, S. (2010). Yield and water use efficiency of (Nigella sativa L.) under different irrigation treatments in a semi-arid region in the West of Iran. Journal of Medicinal Plants Research 4, 1612-1616.
Ghamarnia, H., Miri, E., and Ghobadei, M. (2013). Determinationofwaterrequirement,singleand dual crop coefficients of black cumin (Nigella sativa L.) in a semi-arid climate. Irrigation Science 32, 67-76.
Ghanbari, J., Khajoei-Nejadi, G., and Ruth, S.M. Effect of Saffron (Crocus sativus L.) corm provenance on it’s agro-morphological traits and bioactive compounds. Scientia Horticulturae 256, 108- 605.
Giridhar, K., Reddy, G.S., and Kumari, S.S. (2017). Influence of sowing window and plant density on growth , phenology , yield and quality of Nigella sativa L . in Coastal Humid Tropic. International Journal of Current Microbiology and Applied Sciences 6,499–512.
Gumelar, R.M.R., Sutjahjo, S.H., Marwiyah, S., and Nindita, A. (2014). Karakterisasi dan respon pemangkasan tunas air terhadap produksi serta kualitas buah genotipe tomat lokal. Jurnal Hortikultura Indonesia 5, 73-83.
Hadi, M.R., Darzi, M.H., and Ghandehari Z. (2012). Effects of irrigation treatment and azospirilum inoculation on yield and yield component of black cumin (Nigella sativa L.). Journal of Medicinal Plants Research 6, 4553-4561.
Hartati, R.R.S. and Sudarsono. (2013). Pewarisan sifat hermaprodit dan kontribusinya terhadap daya hasil pada jarak pagar (Jatropha curcas L.) Jurnal Littri 19, 117-129.
Herlina (2018). "Adaptasi Jintan Hitam (Nigella sativa L.) dan Produksi Timokuinon dan Timol Biji di Tiga Ketinggian Wilayah Tropika Indonesia". [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Iqbal, M.S., Qureshi, A.S., and Ghafoor, A. (2010). Ealuation of Nigella sativa L., for genetic variation and ex-situ conservation. Pakistan Journal of Botany 42, 2489-2495.
Kara, N., Katar and D., Baydar, H. (2015). Yield and quality of black cumin ( Nigella sativa L .) populations : the effect of ecological conditions. Turkish Journal of Field Crops 20, 9–14.
Khalid, A.K. and Shedeed, M.R. (2015). Effect of NPK and foliar nutrion on growth, yield and chemical constituents in Nigella sativa L. Journal of Materials and Environmental Science 6, 1709- 1714.
Khoulenjani, M.B. and Salamati, M.S. (2011). Morphological reaction and yield of Nigella sativa L. to Fe and Zn. African Journal of Agricultural Research 7, 2359-2362.
Growth, Production and Bioactive Content of Several Black Cumin (Nigella sativa L.) .......... 117
Kooti,
W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., and Ashtary-Larky. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines 14, 0732-0745.
Lim, T.K. (2013). “Edible Medicinal and Non-Medicinal Plants” Volume 5, Fruits. Springer. New York, USA.
Lulseged, T., Mekbib, F., and Assefa, K. (2018). Correlation and path analysis for yield and yield component in black cumin (Nigella sativa L.). International Journal of Current Research and Academic Review 6, 56-63.
Mahmoud, A.A., Gendy, A.S.H., Said-Al Ahl, H.A.H., Grulova, D., Astatkie, T., and Abdelrazik. (2018). Impacts of harvest time and water stress on the growth and essential oil components of horehound (Marrubium vulgare). Scientia Horticulturae 232, 139-144.
Mahmoudvand, H., Sepahvand, A., Jahanbakhsh, Ezatpour, B., and Mousavi, S.S. (2014). Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. Journal de Mycologie Medicale 24, 155-161.
Mardisiwi, R.S. (2017). “Pertumbuhan Tanaman dan Produksi Timokuinon Jintan Hitam (Nigella sativa L.) pada Beberapa Komposisi Media Tanam dan Interval Penyiraman” [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Mariod, A.A., Ibrahim, R.M., Ismail, M., and Ismail N. (2009). Antioxidant activity and phenolic, content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chemistry 116, 306-312.
Moghaddam, M. and Pirbalouti, A.G. (2017). Agro- morphological and phytochemical diversity of Iranian Cuminum cyminum accessions. Industrial Crops and Products 99, 205–213.
Nugraha, Y.S, Sumarni, T., Sulistyono, R. (2014). Pengaruh interval waktu dan tingkat pemberian air terhadap pertumbuhan dan hasil tanaman kedelai (Glycine max (L) Merril.). Jurnal Produksi Tanaman 2, 552-559.
Ostadi, A., Javanmard, A., Machiani, M.A., Morshedloo, M.R., Nouraein, M., Rasouli, F., and Maggi, F. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops & Products 11, 22- 90.
Periasamy, V.S., Athinarayanan, J., and Alshatwi, A.A. (2016). Anticancer activity of an ultrasonic nanoemolusion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrasonics Sonochemistry 31, 449-455.
Ponder, A. and Hallmann, E., 2019. The effects of organic and conventional farm management and harvest time on the polyphenol content in different raspberry cultivas. Food Chemistry 301, 125-295.
Rafati, M., Ghasemi, A., Saeedi, M., Habibi, E., Salehifar, E., Mosazadeh, M., and Maham, M. (2019). Nigella sativa L. for prevention of acute radiation dermatitis in breast cancer: A randomized, double-blind, placebo-controlled, clinical trial. Complementary Therapies in Medicine 47, 102-205.
Ridwan T. (2014). Karakter agro-fisiologi dan senyawa sekunder tanaman jintan hitam (Nigella sativa L.) dengan aplikasi pupuk kandang sapi dan fosfat alam. [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Rogozhin, E.A., Oshchepkova, Y.I., Odintsova, T. I., Khadeeva, N.V., Veshkurova, O.N., Egorov, T.A., Grishin, E.V., and Salikhov, S.I. (2011). Novel antifungal defensins drom Nigella sativa L seeds. Plant physiology and Biochemistry 39, 131-137.
Setiawati, E. (2017). “Pertumbuhan Tanaman dan Produksi Bioaktif Timokuinon Jintan Hitam (Nigella sativa L.) pada Berbagai Taraf Naungan dan Pemupukan N”. [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Suryadi, R. (2014). “Karakter Morfologi dan Pemupukan N dan P Anorganik terhadap Pertumbuhan dan Produksi Bioaktif Thymoquinone Jintan Hitam (Nigella sativa L.)” [Thesis]. Fakultas Pertanian. Institut Pertanian Bogor.
Telci, I., Sahin-Yaglioglu, A., Eser, F., Aksit, H., Demirtas, I., and Tekin, S. (2014). Comparison of seed oil composition of Nigella sativa L. and Nigella damascena L. during seed maturation stages. Journal of the American Oil Chemists’ Socety 91, 1723–1729.
Verma, N. and Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medical and Aromatic Plants 2, 105-113.
Zang, C., Haiyan, L., Liu, Z., and Liu, Z. (2019). Metabolomics analysis of Camelia sinensis with respect to harvesting time. Food Research International 128, 108-814.
Published
2020-10-15