Increasing Ploidy Level of Garlic (Allium sativum L.) “Tawangmangu Baru” In-Vitro Using Colchicine

  • Molla Gebreyohannes Hailu Plant Breeding and Biotechnology, IPB University, Bogor 16680, Indonesia
  • Ni Made Armini Wiendi Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
  • Diny Dinarti Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
Keywords: ploidy induction, 2,4-D, kinetin, colchicine, “Tawangmangu Baru”

Abstract

“Tawangmangu Baru” garlic variety is known to have low productivity. The variety is still highly demanded due to its strong flavour and aroma; however, its production has not yet been able to fulfill the local needs of Central Java due to the small size and limited production area. This study aimed to determine the effect of concentration and time duration of colchicine treatment towards increasing the ploidy level of “Tawangmangu Baru” garlic variety for genetic variability. The experimental design used in this study was a complete randomized design with two factorials and 12 combinations. The first factor was concentration of colchicine, i.e. 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10%, and the second factor was the immersion time, i.e. 24 and 48 hours. The result indicated that, 4.72% callus induction was obtained in BDS + 0.4 mg.L-1 2,4-D + 2.0 mg.L-1 kinetin; and 4.0% callus proliferation were obtained in both BDS + 1.5 mg.L-1 2,4-D + 1.0 mg.L-1 kinetin and MS +1.5 mg.L-1 2,4-D and 1.0 mg.L-1 kinetin. The untreated plantlets showed higher mortality rate compared to the explants with 48 hours colchicine treatment. Higher number of shoots were recorded in 0.1% colchicine at 48 hours and lower shoots in 24 hours, whereas 0.1% colchicine at 24 and 48 hours showed the highest ploidy level of total nuclear DNA analyzed by flow cytometry. The genetic diversity of the “Tawangmangu Baru” garlic was successfully enhanced by colchicine and immersion treatment. Mutant lines with tetraploid and mixoploid plants were obtained. The putative lines obtained at 0.1% colchicine treatment were subcultured to produce new mutants before testing the phenotype. The application of colchicine at 24 and 48 hours treatment improved the genetic potential of “Tawangmangu Baru” garlic variety in vitro. The application of colchicine increased the ploidy level and an increase in ploidy is expected to make the bulb size larger. Larger tuber size will increase the tuber weight, and also the overall garlic productivity and production in the future.

References

Agustina, T. (2019). “Outlook Bawang Putih Komoditas Pertanian Subsektor Hortikultura”. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian pp. 9-16.
Alan, A.R., Lim, W., Mutschler, M.A., and Earle, E.D. (2007). Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Science 173, 25–31.
Alan, A.R., Brants, A., Cobb, E.D., Goldschmied, P.A., Mutschler, M.A., and Earle, E.D. (2004). Fecund gynogenic lines from onion (Allium cepa L.) breeding materials. Plant Science 167, 1055–1066.
Amanah, H.A., Arumingtyas, E.L., and Indriyani, S. (2016). Chromosome analysis of cayenne pepper (Capsicum frustescens L.) in colchicine induced mutation. Journal of Applied Horticulture 18, 217–220.
Arisuryanti, T., Kurniawati, Z., and Koentjana, J.P. (2018). Karyomorphological study on two local garlic cultivars (Allium sativum L.) from Central Java, Indonesia. AIP Conference Proceedings. AIP Publishing .
Ayu, G.M., Elimasni, and Nurwahyuni, I. (2019). Effect of concentration and duration of colchicine treatment to garlic (Allium sativum L.) Cv. doulu. International Journal of Scientific and Technology Research 8, 172–175.
Bahadur, B, Rajam, M.V., Sahijram, L., and Krishnamurthy, K.V. (2015). Plant biology and biotechnology: Plant diversity, organization, function and improvement. Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement 1, 1–827.
Broertjes, C. (2012). “Application of Mutation Breeding Methods in the Improvement of Vegetatively Propagated Crops”. Elsevier.
Cheng, Z.H., Zhou, X.J., Khan, M.A., Su, L., and Meng, H.W. (2012). In vitro induction of tetraploid garlic with trifluralin. Genetics and Molecular Research 11, 2620–2628.
Corneillie, S., De Storme, N., Van Acker, R., Fangel, J., De Bruyne, M., De Rycke, R., Geelen, D., Willats, W., Vanholme, B., and Boerjan, W. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiology 179, 74–87.
Datta, S.K. (1990). Colchicine induced mutations in seed and vegetatively propagated plants. Journal of the Indian Botanical Society 69, 261– 266.
Dixit, V. and Chaudhary, B.R. (2014). Colchicine- induced tetraploidy in garlic (Allium sativum L.) and its effect on allicin concentration. Journal of Horticultural Science and Biotechnology 89, 585–591.
Foshi, M.L., Martinez, L.E., Ponce, M.T., Galmarini, C.R., and Bohanec, B. (2013). Effect of colchicine and amiprophos-methyl on the production of in vitro doubled haploid onion plants and correlation assessment between ploidy level and stomatal size Efecto de la colchicina y del amiprofos-metil en la producción. Revista de la Facultad de Ciencias Agrarias 45, 155–164.
Harinta, Y.W., Basuki, J.S., and Sukaryani, S. (2018). Pemetaan dan pengembangan Agribisnis komoditas unggulan sayuran di Kabupaten Karanganyar. Agriekonomika 7, 37.
Hassan, M.N., Haque, M.S., and Hassan, M.M. (2014). An efficient protocol for somatic embryogenesis of garlic (Allium sativum L.) using root tip asexplant. Journal of the Bangladesh Agricultural University 12, 1–6.
Jakše M. and Bohanec B. (2003) Haploid induction in onion via gynogenesis. In “Doubled Haploid Production in Crop Plants” (M. Maluszynski, K.J. Kasha , B.P. Forster, I. Szarejko, eds). Springer, Dordrecht. https:// doi.org/10.1007/978-94-017-1293-4_41
Jaskani, M.J., Kwon, S.W., and Kin, D.H. (2005). Flow cytometry of DNA contents of colchicine treated watermelon as a ploidy screening method at MI stage. Pakistan Journal of Botany 37, 685.
Kementrain Pertanian. (2019a). “Panen Bawang Putih Varietas Tawangmangu Baru”. Balai Penelitian Tanaman Sayuran, Badan Penelitian dan Pengembangan Pertanian, 2019. http:// balitsa.litbang.pertanian.go.id/ind/index.php/ berita-terbaru/849-panen-bawang-putih- varietas-Tawangmangu-baru-yang-luar-biasa
Kementerian Pertanian. (2019b). “Statistik Pertanian”. Kementerian Pertanian Republik Indonesia.
Khan, N., Fayyaz, M., Abbasi, A.M., Khan, S.A., and Nazir, A. (2017). Development of an efficient callus derived regeneration system for garlic ( Allium sativum L .) from root explant. Journal of Plant Breeding and Agriculture 1, 1–12.
Luciani, G.F., Mary, A., and Curvetto, C. (2006). Effects of explants and growth regulators in garlic callus formation and plant regeneration Effects of explants and growth regulators in garlic callus formation and plant regeneration. Plant Cell Tissue and Organ Culture 87, 139- 143.
Mahajan, V., Devi, A., Khar, A., and Lawande, K.E. (2015). Studies on mutagenesis in garlic using chemical mutagens to determine lethal dose (LD50) and create variability. Indian Journal of Horticulture 72, 289–292.
Moghbel, N., Borujeni, M.K., and Bernard, F.( 2015). Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology 13, 1–6.
Mubarrat, F., Huq, H., Hoque, M.E., and Khatun, F. (2018). The Effect of kinetin and 2,4-D on in vitro propagation of garlic (Allium sativum L.). Asian Research Journal of Agriculture 8, 1–10.
Münzbergová, Z. (2017). Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. Annals of Botany 120, 329–339.
Nur, Z. (2018). Induksi poliploidi pada bawang putih (Allium sativum L .) dengan pemberian kolkisin polyploid induction on garlic ( Allium sativum L.) with colchicine 6, 783–790.
Pharmawati, M. and Waitiani, N. (2013). Induksi mutasi kromosom dengan kolkisin pada bawang putih (Allium sativum L.) kultivar ‘Kesuna Bali.’ Jurnal Bioslogos 3, 152–158.
Putra, A.H., Ratya, A., and Suhartini, S. (2015). The evaluation of Indonesia import policies of garlic. Greener Journal of Business and Management Studies 5, 016–030.
Roughani, A., Miri, S.M., Kashi, A.K., and Khiabani, B.N. (2017). Increasing the ploidy level in spinach (Spinacia oleracea L.) using mitotic inhibitors. Plant Cell Biotechnology and Molecular Biology 18, 124–130.
Sajjad, Y., Jaskani, M.J. and Mehmood, A. (2013). Effect of colchicine on in vitro polyploidy induction in african marigold (Tagetes erecta L.) 45, 1255–1258.
Salam, M.A., Ali M.R., Eunus Ali, M.D., Alam, K.A., Resa, M.S., Islam S., Rahman, S.M. (2008). Callus induction and regeneration of indigenous garlic (Allium sativum L.). American Journal of Plant Physiology 3, 33-39.
Samadi, B. (2000). “Usaha Tani Bawang Putih” pp 35-37. Penerbit Kanisius, Yogyakarta.
Sinha, P., Kannan, R., and Ganesh, D. (2016). Optimizing of polyploidization by in-vitro methods for genetic improvements of garlic (Allium sativum L.). Research Journal Of Pharmaceutical Biological And Chemical Sciences 7, 2004–2012.
Spencer-Lopes, M.M., Forster, B.P., and Jankuloski, L. (2018). “Manual on Mutation Breeding”. Food and Agriculture Organization of the United Nations (FAO).
Kong, S.P., Cao, Q. W., Sun, J..Q., Liu, B., and Xu, K. (2014). The tetraploid induction of shoot- tip plantlets with colchicine in garlic Scientia Agricultura Sinica 47, 3025–3033.
Tang, Z.Q., Chen, D.L., Song, Z.J., He, Y.C., and Cai, D.T. (2010). In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell, Tissue and Organ Culture (PCTOC) 102, 213–220.
Tchórzewska, D., Deryło, K., and Winiarczyk, K.(2017). Cytological and biophysical comparative analysis of cell structures at the microsporogenesis stage in sterile and fertile Allium species. Planta 245, 137–150.
Trigiano, R.N. and Gray, D.J. (2004). “Plant Development and Biotechnology” pp 87-92. CRC Press, Boca Raton, Florida
Tuwo, M. and Indrianto, A. (2016). Improvement of orchid Vanda hybrid (Vanda limbata Blume X Vanda tricolor Lindl. var. Suavis) by colchicines treatment in Vitro. Modern Applied Science 10, 83.
Wei, L., Dong-Nan, H., Hui, L., and Xiao-Yang, C. (2007). Polyploid induction of Lespedeza formosa by colchicine treatment. Forestry Studies in China 9, 283–286.
Widoretno, W. (2016). In vitro induction and characterization of tetraploid patchouli (Pogostemon cablin Benth.) plant. Plant Cell, Tissue and Organ Culture (PCTOC) 125, 261– 267.
Wiendra, N., Pharmawati, M., and Astiti, N. (2011). Pemberian kolkhisin dengan lama perendaman berbeda pada induksi poliploidi tanaman pacar air (Impatiens balsamina L.). Jurnal Biologi Udayana 15, 9-14.
Yenchon, S. (2014). Polyploidy induction of Dendrobium formosum by colchicine treatment in vitro. Acta Horticulturae 1025, 81–88.
Zhang, Q., Zhang, F., Li, B., Zhang, L., and Shi, H. (2016). Production of tetraploid plants of Trollius chinensis Bunge induced by colchicine. Czech Journal of Genetics and Plant Breeding 52, 34–38.
Published
2020-10-15