Enrichment of Organic Manure with Plant Growth Promoting Rhizobacteria Improved the Root and Shoot Growth of Okra (Abelmoschus esculentus L. Moench.)

  • Richard Elisha Magana Study Program of Agronomy and Horticulture, Graduate School, IPB University (Bogor Agriculture University). Jl. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia & Iramba District Council, Department of Agriculture, Irrigation and and Cooperation, P.O BOX 82 Kiomboi, Iramba, Tanzania
  • Maya Melati Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agriculture University).). Jl. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia
  • Heni Purnamawati Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agriculture University).). Jl. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia
  • Etty Pratiwi Indonesian Soil Research Institute. Jl. Tentara Pelajar 12, Bogor 16114, Indonesia
Keywords: PGPR consortium, poultry manure, root architecture

Abstract

A well-structured root system is essential to ensure optimal plant growth and yield. Two experiments were conducted to determine the effects of plant growth promoting rhizobacteria (PGPR) on the root system of okra plant. These experiments were arranged with a completely randomized design. The first experiment was conducted in the growth chamber with 8 different bacterial isolates consisting of Methylobacterium sp., Bacillus sp., Bacillus methylotrophicus, Flavobacterium tirrenicum, Providencia stuartii, Azotobacter vinelandii, Methylocystis parvus and PGPR consortium. The second experiment was conducted in the greenhouse and examined the effects of four poultry manure rates, i.e. 0, 6, 12 and 18 ton ha-1, or equivalent to 0, 75, 150 and 225% of recommended rates and how these are altered with the presence or absence of PGPR. The results of the experiments showed that, PGPR significantly improved root architecture; the number and length of lateral roots was increased by 242.86% and 777.79% respectively, as well as the dry weight of the roots and shoots of okra plant by 236.36% and 333.33%, respectively. Moreover applying 150% (12 t.ha-1) of the recommended rate of poultry manure enriched with PGPR was found to be most effective in terms of improving the growth and root attributes of okra plants.

References

Adetuyi, F., and Osagie, A. (2011). Nutrient, antinutrient, mineral and zinc bioavailability of okra Abelmoschus esculentus (L) Moench variety. American Journal of Food and Nutrition 1, 49–54. http://dx.doi.org/10.5251/ajfn.2011.1.2.49.54.
Afandi A.L. (2016). "Pengaruh Pemberian Dosis Pupuk Urea terhadap Pertumbuhan, Hasil dan Kualitas Beberapa Galur Okra (Abelmoschus esculentus)". Thesis. Universitas Negeri Jember. Indonesia
Afe, A.I., and Oluleye, F. (2017). Response of okra (Abelmuschus esculenthus L. Moench) to combined organic and inorganic foliar fertilizers. International Journal of Recycling Organic Waste in Agriculture 6, 189–193. doi:10.1007/s40093-017-0166-6
Ahmed, A., and Hasnain, S. (2010). Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure and Applied Chemistry 82, 313–319. doi:10.1351/pac-con-09-02-06
Amanullah, M.M., Sekar, S., and Muthukrishnan, P. (2010). Prospects and potential of poultry manure. Asian Journal of Plant Sciences 9, 172–182.
Anisa, N.A., Markose, B.L., and Surendra, G.K. (2016). Effect of integrated nutrient management on population of biofertilizers in rhizosphere of Okra (Abelmoschus esculentus (L.) Moench). International Journal of Innovative Research in Science Engineering and Technology 5, 5628–5632. doi:10.15680/IJIRSET.2016.0504072
Bellenger, J.P., Wichard, T., Kustka, A.B., Kraepiel, A.M.L. (2008). Uptake of molybdenum and vanadium by nitrogen-fixing soil bacterium using siderophores. Nature Geoscience 1, 243–246. doi:10.1038/ngeo161
Bhattacharyya, P.N., and Jha, D.K. (2012). Plant growth-promoting Rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28, 1327–1350. doi:10.1007/s11274-011-0979-9
Bhushan, A., Bhat, K.L., and Sharma, J.P. (2013). Effect of Azobacter and inorganic fertilizers on fruit and seed yield of Okra cv. Hisar Unnat. Agricultural Science Digest 33, 135–138.

Camciuc, M., Deplagne, M., Vilarem, G., and Gaset, A. (1998). Okra - Abelmoschus esculentus L. (Moench.) a crop with economic potential for set aside acreage in France. Industrial Crops and Products 7, 257–264. http://dx.doi.org/10.1016/S0926- 6690(97), 00056-3.
Fagwalawa, L.D., and Yahya, S.M. (2016). Effect of organic manure on the growth and yield of okra. Imperial Journal of Interdisciplinary Research 2, 130–133.
Gashua, A.G., Bello, T.T., Mohammed, S.G., Mohammed, I.B., and Shehu, A. (2014). Response of okra (Abelmoschus esculantus L. Moench ) to different sources and levels of organic manure in Sudan Savanna of Nigeria. International Journal of Research in Agriculture and Food Science 2, 9–15.
Ge, B., Liu, B., Nwet, T.T., Zhao, W., Shi, L., and Zhang, K. (2016). Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS One. 11, 1–13. doi:10.1371/journal.pone.0166079
Islam, S., Debnath, K.C., Shaon, F.T.U., Das, M., and Hasan, M.F. (2018). The role of active constituents of Abelmoschus esculentus (okra) on tumor biology: a review. International Journal of Science and Research Methodology 10, 111–116.
Jensen, H.L. (1942). Nitrogen fixation in leguminous plants II Is symbiotic nitrogen fixation influenced by Azotobacter. Proceedings of the Linnean Society of New South Wales. 67, 205–212
Khandaker, M.M., Jusoh, N., Ralmi, N.H.A.A., and Ismail, S.Z., (2017). The Effect of different types of organic fertilizers on growth and yield of Abelmoschus esculentus L. Moench (Okra). Bulgarian Journal of Agricultural Science 23, 119–125.
Kumar, A., Bahadur, I., Maurya, B.R., Raghuwanshi, R., Meena, V.S., Singh, D.K., and Dixit, J., (2015). Does a plant growth promoting Rhizobacteria enhance agricultural sustainability? Journal of Pure and Applied Microbiology 9, 715–724.
Lindner, A.S., Pacheco, A., Aldrich, H.C., Staniec, A.C., Uz, I., and Hodson, D.J. (2007). Methylocystis hirsuta sp., a novel methanotroph isolated from a groundwater aquifer. International Journal of Systematic and Evolutionary Microbiology 57, 1891–1900. doi:10.1099/ijs.0.64541-0
Madhaiyan, M., Poonguzhali, S., Lee, H.S., Hari, K., Sundaram, S.P., and Sa, T.M. (2005). Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biology and Fertility of Soils 41, 350–358. doi:10.1007/s00374-005-0838-7
Madhaiyan, M., Poonguzhali, S., Kwon, S.W., and Sa, T.M. (2010). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology 60, 2490–2495. doi:10.1099/ijs.0.015487-0
Martínez-Viveros, O., Jorquera, M., Crowley, D., and Gajardo, G., and Mora, M. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition 10, 293–319. doi:10.4067/s0718-95162010000100006
Mizuno, M., Yurimoto, H., Iguchi, H., Tani, A., and Sakai, Y. (2013). Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants. Bioscience, Biotechnology and Biochemistry 77, 1533–1538. doi:10.1271/bbb.130207
Muneerappa, S. (2018). A review on okra as an antidiabetic, antioxidant and an excellent energy source. Organic and Medicinal Chemistry International Journal 6, 1–5. doi:10.19080/OMCIJ.2018.06.555679
Noar, J.D. and Bruno-Bárcena, J.M. (2018). Azotobacter vinelandii: The source of 100 years of discoveries and many more to come. Microbiology Society 164, 421–436. doi:10.1099/mic.0.000643
Petropoulos, S., Fernandes, Â., Barros, L., and Ferreira, I.C.F.R. (2018). Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chemistry 242, 466–474. doi:10.1016/j.foodchem.2017.09.082
Pratiwi, E., Akhdiya, A., Purwani, J., and Husnain. (2019). "Penelitian Pemanfaatan Bakteri Pereduksi Emisi Gas Metana Peningkat Efisiensi Serapan Hara Tanaman Padi". Laporan Hasil Kegiatan Penelitian DIPA 2019, Satker Balai Penelitian Tanah.
Radhakrishnan, R., Hashem, A., and Abd Allah, E.F. (2017). Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in. Physiolology 8, 1–14. doi:10.3389/fphys.2017.00667
Rafique, M., Riaz, A., Anjum, A., Qureshi, M.A., and Mujeeb, F. (2018). Role of bioinoculants for improving growth and yield of okra (Abelmoshuses culentum). Universal Journal of Agricultural Research 6, 105–112. doi:10.13189/ujar.2018.060302
Rana, A., Saharan, B., Kabi, S.R., Prasanna, and R., Nain, L. (2011). Providencia, a PGPR with biocontrol potential elicits defense enzymes in wheat. Annals of Plant Protection Sciences 19, 138 - 141.
Rizk, A., Sawan, M., and Ghoname, A.A. (2007). The integrated use of bio-inoculants and chemical nitrogen fertilizer on growth, yield and nutritive values of two okra (Abelmoschus esculentus , L .). cultivars. Australian Journal of Basic and Applied Sciences 1, 307–312.
Rodríguez, H. and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17, 319–339.
Rupaedah, B., Anas, I., Santosa, D.A., Sumaryono, W., and Budi, W. (2014). Role of rhizobacteria and arbuscular mycorrhizae on enhancing nutrient absorption efficiency of sweet sorghum (Sorghum bicolor L. Moench). Jurnal Ilmu Tanah dan Lingkungan 16, 45–52.
Shaharoona, B., Arshad, M., Zahir, Z.A., and Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC-Deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry 38, 2971–2975. doi:10.1016/j.soilbio.2006.03.024
Taiz, L., and Zeiger, E. (2002). "Plant Physiology". 3rd ed. Massachusetts (USA): Sinauer Associates, Inc.
Vacheron, J., Desbrosses, G., Bouffaud, M-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., and Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4, (September) 356. doi:10.3389/fpls.2013.00356
Vadivukkarasi, P. and Bhai, R.S. (2020). Phyllosphere-associated Methylobacterium: a potential biostimulant for ginger (Zingiber officinale Rosc.) cultivation. Archives of Microbiology 202, 369–375. doi:10.1007/s00203-019-01753-6
Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., and Boyce, A.N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability - a review. Molecules 21, 1–17. doi:10.3390/molecules21050573
Vicente-Hernández, A., Salgado-Garciglia, R., Valencia-Cantero, E., Ramírez-Ordorica, A., Hernández-García, A., García-Juárez, P., and Macías-Rodríguez, L. (2019). Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria × ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. Journal of Plant Growth Regulation 38, 765–777. doi:10.1007/s00344-018-9888-6
Published
2020-10-15