Evaluation of Silica Uptake from Foliar-Applied Silicon Nanoparticles in Melon (Cucumis melo L.) under Soilless Culture

  • Haian Amin Badrieh AAgronomy and Horticulture Program, Graduate School, IPB University (Bogor Agriculture University). Jl. Meranti, IPB Darmaga Campus, Bogor 16680, Indonesia.
  • Winarso Drajad Widodo Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agriculture University).). Jl. Meranti, IPB Darmaga Campus, Bogor 16680, Indonesia
  • Anas Dinurrohman Susila Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agriculture University).). Jl. Meranti, IPB Darmaga Campus, Bogor 16680, Indonesia
  • Willy Bayuardi Suwarno Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University (Bogor Agriculture University).). Jl. Meranti, IPB Darmaga Campus, Bogor 16680, Indonesia
Keywords: drip irrigation system, fertigation, moisture content, silica absorption efficiency


Melon (Cucumis melo L.) is a fruit commodity that gets a great interest to be developed in Indonesia and has a high nutritional value. However, the fungal infection and pathogens in melon cultivation are considered significant problems that are difficult to manage. Therefore, efforts are needed to improve the productivity and quality of melon and prevent pest and disease attacks. One mineral nutrient that is assumed to enhance plant resistance and increase the quality and production of melon is silica. The purpose of the research was to evaluate silica absorption from foliar-applied silicon nanoparticles in melon under soilless culture and improve melon fruit's growth and quality by applying silica fertilizer. The experimental design used was a split-plot randomized complete block design 3 x 2 factorial pattern with four replicates. The main plot factor is silica fertilizer (Novelgro, water-soluble), consisting of three silica concentrations of 0.67; 1.33 ppm, and control. The spray volume of each treatment was 160 ml per plant with seven days' intervals and a frequency of three times. The subplot factor is melon varieties consisting of “Alisha” and “Glamour”. The findings showed that silica fertilizer significantly increased the plant height, stem diameter, internode length, total number of hermaphrodite flowers, number of hermaphrodite flowers that are swelling, while decreased the fruit moisture content and gave the best average fruit position. Instead, The “Glamour” variety gave the best response to plant growth and fruit quality. Moreover, the melon plant could absorb silica in the low category (<1% Si). The highest silica contents were found in the “Alisha” cultivar leaves and the “Glamour” cultivar's rinds treated with the silica concentration of 1.33 ppm as much as 0.34% and 0.30%, respectively.


Andreacute, L. A., Antonio, C. T. da C., Jos eacute, B. D. J. uacute nior, Vanda, P., and Marcos, C. M. (2016). Agronomic performance of common bean (Phaseolus vulgaris L.) according to foliar application of potassium silicate in two sowing times. African Journal of Agricultural Research 11, 2528–2535.

Asaduzzaman, M., Saifullah, M., Mollick, A. K. M. S. R., Hossain, M. M., Halim, G. M. A., and Asao, T. (2015). “Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops”. https://doi.org/10.5772/59708

Asmar, S. A., Castro, E. M., Pasqual, M., Pereira, F. J., and Soares, J. D. R. (2013). Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Scientia Horticulturae 161, 328–332.

Asnawi, R dan I. Dwiwarni. (2000). Pengaruh mulsa terhadap pertumbuhan dan produksi enam varietas cabai (Capsicum annum Linn.). Jurnal Tanah Tropika 5, 5-8.

Bangun, A.P. (2004). ‘‘Menangkal Penyakit dengan Jus Buah dan Sayuran’’. AgroMedia. Jakarta.

Bustami, Sufardi, and Bakhtiar. (2012). Serapan hara dan efisiensi pemupukan phosphat serta pertumbuhan padi varietas lokal. Jurnal Manajemen Sumberdaya lahan 1, 159-170.

Cornelis, J. T., B. Delvaux, R. B. Georg, Y. Lucas, J. Ranger, and S. Opfergelt. (2011). Tracing the origin of dissolved silicon transferred from various soil-plant systems towards Rivers: A Review. Biogeosciences 8, 89–112.

Darjanto dan Satifah, S. (1982). ‘‘Pengetahuan Dasar Biologi Bunga dan Teknik Penyerbukan Silang Buatan’’ p. 142. PT Gramedia, Jakarta.

Djajadi. (2013). Silicon (Si): Beneficial element for sugarcane (Saccharum officinarum L.). Perspektif 12, 47-55.

Djajadi, D., Hidayati, S. N., Syaputra, R., and Supriyadi, S. (2017). Effect of liquid Si fertilizer on yield and commercial cane content of sugarcane. Jurnal Littri 22, 176-181.

El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., Mauch, F., and Schwab, F. (2021). Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology 16, 344–353.

Falk, K.L., Tokuhisa, J.G., and Gershenzon, J. (2007). The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biology 9, 573-581.

FAOSTAT. (2019). “Food and Agriculture Organization of the United Nations”. http://www.faostat.fao.org. [December 22, 2020].

Fatmawati, A., and Daryono, B.S. (2016). Detection of powdery mildew (Podosphaera xanthii (Castagne) U. Braun & N. Shishkoff) resistance gene in melon (Cucumis melo L.) cultivar Tacapa Green Black. Bioengineering and Bioscience 4, 51-55.

Hagin, J., and Lowengart, A. (1996). Fertigation for minimizing environmental pollution by fertilizers. Fertilizer Research 43, 5–7.

Harjanti, R.A., Tohari, and Utami, S.N.H. (2014). Pengaruh takaran pupuk nitrogen dan silika terhadap pertumbuhan awal (Saccharum officinarum L.) pada inceptisol. Vegetalika 3, 35-44.

Hodson, M.J., White, P.J., Mead, A., and Broadley, M.R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany 96, 1027-1046.

Howell, T.A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal 93, 281–289.

Huang, S., Wang, L., Liu, L., Hou, Y., and Li, L., (2015). Nanotechnology in agriculture, livestock, and aquaculture in China. A Review. Agronomy for Sustainable Development 35, 369-400 https://doi.org/10.1007/s13593-014-0274-x

Kementerian Pertanian. (2016). “Basis Data Statistik Pertanian”. https://aplikasi.pertanian.go.id/bdsp/hasil_ind.asp. [July 1, 2019].

Lester, G. (1997). Melon (Cucumis melo L.) fruit nutritional quality and health functionality. Hortechnology 7, 222-227.

Liang, Y., Sun, W., Zhu, Y.G., and Chrisrie, P. (2007). Mechanisms of silicone mediated alleviation of abiotic stresses in higher plants. Environment Pollution 147, 422-428.

Lichtfouse, E. (2010). ‘‘Genetic engineering, Biofertilisation, Soil Quality and Organic Farming’’. https://doi: 10.1007/978-90-481-8741-6.

Liu, R., and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514, 131–39.

Luz, J.M.Q., Guimarães, S.T.M.R., and Korndörfer, G.H. (2006). Produção hidropônica de alface em solução nutritiva com e sem silício. Horticultura Brasileira 24, 295–300.

Ma, J. F., Miyake, Y., and Takahashi, E. (2001). Silicon as a beneficial element for crop plants. Studies in Plant Science 8, 17–39.

Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50, 11–18.

Marschner, H. (1995). ‘‘Mineral Nutrition of Higher Plants’’. 2nd ed. p. 889. London Academic Press.

Marschner, P. (2012). ‘‘Marschner’s Mineral Nutrition of Higher Plants’’. London Academic Press.

Meena, V.D., Dotaniya, M.L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., and Subba Rao, A. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceeding National Academy of Science India– Biological Science 84, 505–518.

Mulyadi, M., and Toharisman, A. (2003). Silikat: hara fungsional yang berperan dalam meningkatkan produktivitas tebu. Pusat Penelitian Perkebunan Gula Indonesia, pp.1-14.

Oliveira, L.A., and Castro, N.M. (2002). Ocorrência de silica nas folhas de Curatella americana L. e de Davilla elliptica St. Hil. Revista Horizonte Cientifico 38, 159-170.

Pardossi, A., and Incrocci, L. (2011). Traditional and new approaches to irrigation scheduling in vegetable crops. HortTechnology 21, 309–313.

Richmond, K.E., and Sussman, M. (2003). Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6, 268–272.

Rose, H., Benzon, L., Rosnah, M., Rubenecia, U., Ultra, V.U., and Lee, S.C. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research 7, 2223–7054.

Ryall, A.L., and Lipton, W.J. (1972). ‘‘Handling, Transportation and Storage of Fruits and Vegetables’’. West Point Connecticut. The AVI Publication.

Solaimalai, A., Baskar, M., Sadasakthi, A., and Subburamu, K. (2005). Fertigation in high value crops, a review. Agricultural Reviews 1, 1-13.

Song, X.P., Verma, K.K., Tian, D.D., Zhang, X.Q., Liang, Y.J., Huang, X., Li, C.N., and Li, Y.R. (2021). Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biological Research 54, 1–12.

Sudarmadji. (1997). ‘‘Analisa Kadar Air Pada Bahan Makanan’’. Liberty Press, Yogyakarta.

Tanaka, T., Shnimizu, M., and Moriwaki, H. (2012). Cancer chemoprevention by carotenoids. Molecules 17, 3202–3242. https://doi.org/10.3390/molecules17033202

Triadiati, T., Muttaqin, M., and Saidah Amalia, N. (2019). Growth, yield, and fruit of melon quality using silica fertilizer. Agritrop Jurnal Ilmu-Ilmu Pertanian 24, 366–374.

Yuan, N., Cai, H., Liu, T., Huang, Q., and Zhang, X. (2019). Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorption Science and Technology 37, 333-348.