Estimation of Genetic Parameters for Selected Quantitative Traits in Introduced African Yam Bean (Sphenosylis stenocarpa Hochst. ex. A. Rich Harms) Genotypes

Authors

  • Prince Emmanuel Norman Sierra Leone Agricultural Research Institute, PMB 1313, Tower Hill, Freetown, Sierra Leone
  • Kumba Yannah Karim Njala University, School of Agriculture and Food Sciences, Department of Crop Science, Njala Campus, Sierra Leone
  • Yvonne Sylvia Gloria Ethel Norman School of Education, Njala University/ Department of Economics, University Secondary School, Sierra Leone
  • William Lonaah Vamboi Njala University, School of Agriculture and Food Sciences, Department of Crop Science, Njala Campus, Sierra Leone

DOI:

https://doi.org/10.29244/jtcs.10.03.205-212

Keywords:

quantitative traits, breeding values, genetic parameter estimates, genetic variability, African yam bean

Abstract

A solid understanding of the genetic control of traits within breeding populations is essential for selecting superior genotypes and parent plants for African yam bean (AYB) cultivation. In this study, we explored the phenotypic breeding values and genetic parameter estimates for various traits in 10 introduced AYB varieties. These traits included seed emergence speed (SES), seedling vigor index (SVI), final germination percentage (FGP), seed yield, days to first flower bud initiation (DAYSFBI), days to first flowering (DAYSF), and days to first pod initiation (DAYSPI). We conducted the trial using a randomized complete block (RCB) design with the following varieties: TSs2, TSs60, TSs11, TSs33, TSs282, TSs450, TSs10, TSs432, TSs424, and TSs151B. Traits showing high and medium genotypic coefficient of variation (GCV) were seed yield (20.7), SVI (12.1), and seed emergence speed (10.8), respectively. Traits with high phenotypic coefficient of variation (PCV) included seed yield (36.8), SVI (22.8), and SES (37.5). The presence of variability in all studied traits was evident from both GCV and PCV values. However, PCV values were slightly higher than GCV, suggesting the influence of environmental factors on these traits. Seed yield exhibited high genetic advance (23.9) and intermediate heritability (31.5%), while SES showed low heritability (8.4%) and low genetic advance (6.5), and FGP displayed low heritability (8.3%) and low genetic advance (2.1). High heritability and genetic advance in certain traits indicate the presence of additive gene action, suggesting that these traits can be improved through direct selection. These findings suggest the presence of valuable variations that can be harnessed for AYB genetic enhancement and selection purposes. Our study results offer valuable insights for the genetic improvement, conservation, management, multi-location evaluations, short-term recommendations, and potential release of new AYB genotypes.

References

Agre, P. A., Norman, P. E., Asiedu, R., and Asfaw, A. (2021). Identification of quantitative trait nucleotides and candidate gene for tuber yield and mosaic virus tolerance in an elite population of white Guinea yam (Dioscorea rotundata) using genome-wide association scan. BMC Plant Biology 21, 552. https://doi.org/10.1186/s12870-021-03314-w.
Aina, A. I., Ilori, C. O., Ekanem, U. O., Oyatomi, O., Potter, D., and Abberton, M. T. (2020). Morphological characterization and variability analysis of African Yam Bean (Sphenostylis stenocarpa Hochst. ex. A. Rich) Harms. International Journal of Plant Research 10, 45–52. DOI: 10.5923/j.plant.20201003.01
Burson, B. L., Tischler, C. R., and Ocumpaugh, W. R. (2009). Breeding for reduced post-harvest seed dormancy in switchgrass: Registration of TEM-LoDorm switchgrass germplasm. Journal of Plant Registration 3, 99–103. https://doi.org/10.3198/jpr2008.07.0433crg
Burton, W. G., and Devane, E. H. (1953). Estimating heritability in tall Fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal 45, 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x
Deshmukh, S. N. N., Basu, M. S., and Reddy, P. S. (1986). Genetic variability, character association and path coefficients of quantitative traits in virginia bunch varieties of groundnut. Indian Journal of Agricultural Science 56, 816–821.
Gilmour, A. R., Thompson, R., and Cullis, B. R. (1995). Average information REML: An efficient algorithm for variance parameter estimation. Biometrics 51, 1440–1450. https://doi.org/10.2307/2533274.
Gonzalez-Andres, F., and Ortiz, J. M. (1995). Seed morphology of Cytisopyllum, Cytisus, Chamaecytisus and Genista (Fabaceae: Genisteae) species for characterization. Seed Science Technology 23, 289–300.
Gopalakrishnan, K. K., and Thomas, T. D. (2014). Reproductive biology of Pittosporum dasycaulon Miq., (Family Pittosporaceae) a rare medicinal tree endemic to Western Ghats. Botanical Studies 55, 15. doi:10.1186/1999-3110-55-15
Hossain, M. A., Arefin, M. K., Khan, B. M., and Rahman, M. A. (2006). Effects of Seed treatments on germination and seedling growth attributes of horitaki (Terminalia chebula Retz.) in the nursery. Research Journal of Agriculture and Biological Sciences 1, 135–141.
Islam, A. K. M. A., Anuar, N., and Yaakob, Z. (2009). Effects of genotypes and pre-sowing treatments on seed germination behavior of Jatropha. Asian Journal of Plant Sciences 8, 433–439. https://doi.org/10.3923/ajps.2009.433.439
Johnson, H. W., Robinson, H. F., and Comstock, R. E. (1955). Estimates of genetic and environmental variability in soyabean. Agronomy Journal 47, 477–483. https://doi.org/10.2134/agronj1955.00021962004700070009x
Kamboj, R., and Nanda, V. (2017). Proximate composition, nutritional profile and health benefits of legumes—a review. Legume Research International Journal 41, 325–332.
Kroma, S., Norman, P. E., Barrie, A. U., and Norman, S. Y. (2016). Efficacy of chicken manure on the growth, yield and profitability of maize in the upland and inland valley swamp of Sierra Leone. International Journal of Sciences 5, 7–13. DOI:10.18483/ijSci.1116
Maiti, R. K., Hernandez-Pineiro, J. L., and Valdez-Marroquin, M. (1994). Seed ultra-structure and germination of some species of Cactaceae. Fiton 55, 97–105.
Nduwumuremyi, A., Tongoona, P., and Habimana, S. (2013). Mating designs: helpful tool for quantitative plant breeding analysis. Journal of Plant Breeding and Genetics 1, 117–129.
Norman, P. E., Tongoona, P. B., Danquah, A., Danquah, E. Y., Agbona, A., Asiedu, R., and Asfaw, A. (2021). Genetic parameter estimation and selection in advanced breeding population of white Guinea yam. Journal of Crop Improvement 35, 790–815. https:// doi.org/10.1080/15427528.2021.1881012
Norman, P. E., Danquah, A., Asfaw, A., Tongoona, P. B., Danquah, E. Y., and Asiedu, R. (2020). Seed Viability, Seedling Growth and Yield in White Guinea Yam. Agronomy Journal 11, 1–10. https:// dx.doi.org/10.3390/agronomy11010002
Norman, P. E., Asfaw, A., Tongoona, P. B., Danquah, A., Danquah, E. Y., De Koeyer, D., and Asiedu, R. (2018). Pollination success in some white yam genotypes under polycross and nested mating designs. International Journal of Biological Sciences and Applications 5, 19-28.
Obiagwu, C. J. (1997). Screening process for ideal food legume cover crops in the tropical ecosystem: (II) Application of the selection method for grain legume crops of the Benue River Basins of Nigeria (BRBN). Journal of Sustainable Agriculture (USA) 10, 15–31. https://doi.org/10.1300/J064v10n01_04
Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–554. https://doi.org/10.2307/2334389
Piaskowski, J., Hardner, C., Cai, L., Zhao, Y., Iezzoni, A., and Peace, C. (2018). Genomic heritability estimates in sweet cherry reveal non-additive genetic variance is relevant for industry-prioritized traits. BMC Genetics 19, 23. doi:10.1186/s12863-018-0609-8.
Piepho, H.P., Möhring, J., Melchinger, A.E., and Büchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–228. https://doi.org/10.1007/s10681-007-9449-8
Potter, D. (1992). Economic botany of Sphenostylis (Leguminosae). Economic Botany 46, 262–275. https://www.jstor.org/stable/4255442
Robinson, H. F., Comstock, R. E., and Harvey, P. H. (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal 41, 353–359. https://doi.org/10.2134/agronj1949.00021962004100080005x
Shukla, S., Bhargava, A., Chatterjee, A., Srivastava, J., Singh, N., and Singh, S. P. (2006). Mineral profile and variability in vegetable amaranth (Amaranthus tricolour). Plant Foods for Human Nutrition 61, 23–28. doi:10.1007/s11130-006-0004-x.
Singh, A. K., Mishra, S. P., and Parihar, R. (2018). Studies on genetic variability parameters on grain yield and its yield attributing traits in maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences 7, 1261–1266. https://doi.org/10.20546/ijcmas.2018.709.150

Downloads

Published

2023-10-29

How to Cite

Emmanuel Norman, P., Yannah Karim, K., Sylvia Gloria Ethel Norman, Y., & Lonaah Vamboi, W. (2023). Estimation of Genetic Parameters for Selected Quantitative Traits in Introduced African Yam Bean (Sphenosylis stenocarpa Hochst. ex. A. Rich Harms) Genotypes. Journal of Tropical Crop Science, 10(03), 205–212. https://doi.org/10.29244/jtcs.10.03.205-212