Determination of Seed Physiological Maturity and Invigoration using Plasma-Activated Water and Ultrafine Bubble Water on Okra Seeds
DOI:
https://doi.org/10.29244/jtcs.11.03.217-228Keywords:
Abelmoschus esculentus, germination capacity, moisture content, seed color, seed dry weightAbstract
Seeds physical and physiological qualities are primarily determined by seed physiological maturity. Seed enhancement technology has developed rapidly, including using ultrafine bubbles (UFB) and plasma-activated water (PAW) to increase seed viability. This study aimed to determine seed physiology maturity on okra seed to get the optimal harvesting period seeds and to examine the most effective seed enhancement plasma-activated water and ultrafine-bubble Water. The first experiment was arranged using completely randomized design with fruit maturity as the single factor, harvested at 3, 4, 5, or 6 weeks after anthesis (WAA), with three replications. The second experiment used factorial completely randomized design; the first factor is seed lots with different storage times (fresh seed and one-year storage seed), and the second factor seed invigoration using UFB (20 ppm dissolved oxygen) and PAW (10-, 20-, and 30-min exposure) as the second factor. Untreated seeds were used as control. Fifty seeds were used in each treatment. Okra seed physiological maturity was reached at 5 WAA based on seed dry weight, germination capacity, seedling vigor, and speed of germination. The pod color at 5 WAA is olive brown, and seed testa has dark greyish purple. Plasma-activated water at 10 minutes exposure increased the vigor index of seed lots stored for one year by 86% and PAW20 by 87%. Plasma activated water at 10-, 20- and 30-minutes exposures significantly increased the seedling vigor index and germination speed of fresh seeds harvested at 5 WAA.
References
Akhir, N., Hayati, P.K.D., and Ardi. (2017). “Fenologi pembungaan, viabilitas dan vigor benih dua genotipe okra (Abelmoschus esculentus L. Moench) di kota Padang”. Faculty of Agriculture, Andalas University.
Al-Sharify, Z.T., Al-Sharify, T.A., Al-Obaidy, Baker, W., and Al-Azawi, A. M. (2020). Investigative study on the interaction and applications of plasma activated water (PAW). IOP Conference Series: Material Science and Engineerig 870, 012042.
Bafoil, M., Le Ru, A., Merbahi, N., Eichwald, O., Dunand, C., and Yousfi, M. (2019). New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. Scientific reports 9, 1–10.
Billah, M., Sajib, S.A., Roy, N.C., Rashid, M.M., Reza, M.A., Hasan, M.M., and Talukder, M.R. (2020). Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Archives of Biochemisty and Biophysics 681, 108253.
Bortey, H.M., and Dzomeku, B.M. (2016). Fruit and seed quality of okra (Abelmoschus esculentus L. Moench) as influenced by the harvesting stage and drying method. Indian Journal of Agricultural Research 50, 330-334.
Chiara, L.P., Dana, Z., Agata, L., Daniela, B., Fabio, P., and Pietro, F. (2018). Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Science Emerging Technology 49, 13–19.
Copeland, L.O., and McDonald, M.B. (2012). Principles of seed science and technology. Springer Science & Business Media.
Demir, I., and Ermis, S. (2005). Effect of harvest maturity and drying method on okra seed quality. Seed Technology 27, 81-88.
Dhankhar, B.S., and Mishra, J.P. (2004). Objectives of okra breeding. In: Singh PK, Dasgupta SK, Tripathi SK. editor. Hybrid Vegetable Development, India: Indian Agriculture Researche Institute.
Dolezalova, E., and Lukes, P. (2015). Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 103, 7–14. https://doi.org/10.1016/j.bioelechem.2014.08.018.
Gomes, M.P., and Garcia, Q.S. (2013). Reactive oxygen species and seed germination. Biologia 68, 351-357. doi:10.2478/s11756-013-0161-y.
Groot, S.P. (2022). Seed maturation and its practical implication. Seed Science and Technology 50, 141-151.
[ISTA] International Seed Testing Association. (2018). International Rules for Seed Testing. Bassedorf: Switzerland.
Iswara, V. (2019). “Pematahan dormansi fisiologi pada benih padi dan dormansi fisik pada benih saga merah dengan Ultrafine Bubbles Water”. Faculty of Agriculture, Bogor Agriculture Institute.
Kartasapoetra, A.G. (2003). Teknologi Benih Pengolahan Benih dan Tuntunan Praktikum. Jakarta: Rineka Cipta.
Khamsen, N., Onwimol, D., Teerakawanich, N., Dechanupaprittha, S., Kanokbannakorn, W., and Hongesombut, K. (2016). Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Applied Mateials and Interfaces 8, 19268–19275.
Khan, M.A., and Rab, A. (2019). Plant spacing affects the growth and seed production of okra varieties. Sarhad Journal of Agriculture 35, 751-756.
Li, P., Fan, J., Song, C., Dong, X., and Kang, D. (2022). Seed vigour and morphological and physiological characteristics of Epimedium brevicornu Maxim: In different stages of seed development. Plants, 11, 2399.
Liu, S., Oshita, S., and Makino, Y. (2014). Reactive oxygen species induced by water containing nano-bubbles and its role in the improvement of barley seed germination. In: Proceedings of 4th Micro and Nano Flows Conference UCL, London, UK 7-10; September. hlm 1–8. https://core.ac.uk/reader/29139710.
Liu, S., Oshita, S., Kawabata, S., Makino, Y., and Yoshimoto, T. (2016). Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir 32, 11295–11302. doi: 10.1021/acs.langmuir.6b01621.
Liu, S., Oshita, S., Thuyet, D. Q., Saito, M., and Yoshimoto, T. (2018). Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro. Langmuir 34, 11878–11885. doi: 10.1021/acs. langmuir. 8b02440.
Maia, J., Qadir, A., Widajati, E., and Purwanto, Y.A. (2021). Teknologi ultrafine bubbles untuk pematahan dormansi benih cendana (Santalum album L.). Jurnal Perbenihan Tanaman Hutan 9, 27-41.
Ministry of Agriculture. (2019). [Kementan]. Keputusan Mentri Pertanian Republik Indonesia Nomor 42 Tahun 2019 tentang Teknis Sertifikasi Benih Hortikultura. Jakarta: Kementan.
Nalwa, C., Thakur, A.K., Vikram, A., Rane, R., and Vaid, A. (2017). Studies on plasma treatment and priming of seeds of bell pepper (Capsicum annum L.). Journal of Applied and Natural Science 9, 1505-1509.
Nitish, K., Mukesh, K., Arun, K., Prabhash, K.S., and Vijay, K.S. (2021). Effect of harvesting stage and drying method on seed quality of okra (Abelmoschus esculentus L. Moench). International Journal of Current Microbiology and Applied Sciences 10, 653-661.
Pathare, P.B., Opara, U.I., and Al-Said, E.A. (2013). Colour measurement and analysis in fresh and processed foods. Food Bioprocess Technology 6, 36-60.
Perwira, J.P., Suharsi, T.K., Syukur, M. (2019). Optimasi mutu benih okra (Abelmoschus esculentus L. Moench) varietas Zahira dan Naila melalui penjarangan buah. Faculty of Agriculture, Bogor Agriculture Institute.
Priatama, R.A., Pervitasari, A.N., Park, S., Park, S.J., and Lee, Y.K. (2022). Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth. International Journal of Molecular Sciences, 23, 4609.
Raga, Y. (2023). Mekanisme Peningkatan viabilitas dan vigor true shallot seed melalui invigorasi dengan ultrafine bubble water dan teknologi plasma. Faculty of Agriculture, Bogor Agriculture Institute.
Sadjad S. (1994). Kuantifikasi Metabolisme Benih. Jakarta: PT Gramedia Widiasarana Indonesia.
Santos, R.F.D., Gomes-Junior, F.G., and Marcos-Filho, J. (2020). Morphological and physiological changes during maturation of okra seeds evaluated through image analysis. Scientia Agricola 77, e20180297. doi: http://dx.doi.org/10.1590/1678-992X-2018-0297.
Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., and Julak, J. (2015). Nonthermal plasma—A Tool for Decontamination and Disinfection. Biotechnology Advances 33,1108–1119. doi: 10.1016/j.biotechadv.2015.01.002.
Souza, F.H., and Marcos-Filho, J. (2001). The seed coat as a modulator of seed-environment relationships in fabaceae. Brazillian Journal of Botany 24, 365–375.
Sripathy, K.V., and Groot, S.P.C. (2023). Seed development and maturation. In: Dadlani M, Yadava DK. Editors. Seeds science and technology, Springer. Singapore. https://doi.org/10.1007/978-981-19-5888-5_2. [September 20, 2023]
Swamy, K.R.M. (2023). Origin, distribution, taxonomy, botanical description, cytogenetics, genetic diversity and breeding of okra (Abelmoschus esculentus (L.) Moench.). International Journal of Development Research 13, 62026-62046.
Syarovy, M., Haryati, H., and Sitepu, F.E.T. (2013). Pengaruh beberapa tingkat kemasakan terhadap viabilitas benih tanaman rosela (Hibiscus sabdariffa L.). Jurnal Agroekoteknologi Universitas Sumatera Utara 1, 95106.
Takahashi, M. (2014). Latest technology on micro and nanobubbles – the basic research on micro and nanobubbles and their application in the agricultural field. Journal of Seed Science and Technology 117-121.
Yabe, A. (2022). History of ultrafine bubbles. In: Terasaka K, Yasui K, Kanematsu W, Aya N. editors. Ultrafine Bubbles. Singapore: Jenny Stanford Publishing Pte. Ltd. p 1-16. doi: 10.1201/9781003141952.
Zhou, R., Li, J., Zhou, R., Zhang, X., and Yang, S. (2019). Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innovative Food Science Emerging Technology 53, 36–44.
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.