Genetic Diversity Analysis of Ethiopian Barley (Hordeum vulgare L.) Genotypes Based on Agronomic Traits Using Cluster and Principal Component Analysis
DOI:
https://doi.org/10.29244/jtcs.11.03.346-364Keywords:
biplot analysis, breeding programs, high-yielding genotypes, hybridization, intercluster distanceAbstract
Genetic diversity is essential for barley breeding, enabling the selection of desirable traits for improvement. Previous genetic diversity studies on barley have not been sufficient compared to the genetic resources available in the gene bank and ever-changing weather conditions. This study was therefore conducted to assess the extent of genetic variability and association of agronomic traits in barley genotypes at the Adet and Debark experimental stations during the 2023 main cropping season. Eighty-one barley genotypes were evaluated using a 9x9 simple lattice design. The analysis of variance revealed a high level of variability among barley genotypes. The first four principal components at Adet accounted for 78.4% of the total variation, while the first five components accounted for 80.5% at Debark. Traits such as grain-filling period, plant height, biomass, grain yield at Adet, grain yield, grain-filling period, harvest index, and thousand-seed weight at Debark contributed most to the first two components. The biplot analysis also revealed a strong negative correlation between days to heading and leaf rust severity with grain yield, harvest index, and grain filling period. Using hierarchical cluster analysis, the genotypes were grouped into five clusters at each location, each with a specific trait composition. and clusters I and III (71.84). At Adet, the greatest intercluster distance was between clusters II and IV (75.0), followed by clusters II and III (59.35), while at Debark, it was between clusters III and V (103.98), followed by clusters III and IV (82.14). The greater intercluster distance observed in this study indicates genetic diversity among the barley genotypes. This study also identified high-yielding genotypes (5, 9, 18, 32, 41, 50, 51, 53, 54, 60, 65, 68, 75) with grain yield potentials ranging from 2681.2 kg.ha -1 to 7291.6 kg.ha -1 at Debark and 80.5 kg.ha -1 to 4631.8 kg.ha -1 at Adet. These genotypes show potential as varieties for selection or as parents for hybridization. However, multi-year and multi-location trials are needed to confirm these results.
References
Abebe, T. D., Bauer, A. M., and Léon, J. (2010). Morphological diversity of Ethiopian barleys (Hordeum vulgare L.) in relation to geographic regions and altitudes. Hereditas 147, 154-164. DOI:https://doi.org/10.1111/j.1601-5223.2010.02173.x
Abunu, M., Ewenetu, W., Wolie, A., Ferede, B., Ayaleneh, Z., Wale, S., Getaneh, D., Asmare, G., Jorgi, T., and Kindu, M. (2024). Performance and Stability of Finger millet [Eleusine coracana (L.) Gaertn] Genotypes in Northwestern Ethiopia. East African Journal of Sciences 18, 29-40. DOI:https://doi.org/10.20372/eajs.v18i1.2000
Allo Aman, D., Dawit T, D., Singh, B., Kassahun Tesfaye, and Krishna, M. (2020). Multivariate analysis of quantitative characters variability in Ethiopian barley (Hordeum vulgare L.) landrace: based on regions and altitude. Genetika 52, 597-620. DOI: https://doi.org/10.2298/GENSR2002597D
Alqudah, A. M., Sallam, A., Baenziger, P. S., and Börner, A. (2020). GWAS: fast-forwarding gene identification and characterization in temperate cereals: lessons from barley–a review. Journal of Advanced Research 22, 119-135. DOI: https://doi.org/10.1016/j.jare.2019.10.013
Angassa, D., and Mohammed, J. (2021). Genetic Diversity Assessment of Ethiopian Landrace Barley (Hordeum Vulgare (L.)) Genotypes Through Multivariate Analysis. American Journal of Biological and Environmental Statistics 7, 67-73. DOI: https://doi.org/10.11648/j.ajbes
Angassa, D., and Mohammed, J. (2022). Agro-morphological variability study of Ethiopian barley (Hordeum vulgare L.) accessions for their important agronomical traits at Hadiya zone, Southern Ethiopia. Journal of Plant Sciences 10, 19-25. DOI: https://doi.org/10.11648/j.jps
Ayichew, K. M. (2019). "Genetic diversity among barley (Hordeum vulgare L.) landraces from southern Ethiopia". (Thesis). Jimma University, Jimma, Ethiopia, Retrieved from http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/3704/MSc.%20Thesis_Gizaw_Wegayehu_SPLHO.pdf?sequence=1&isAllowed=y
Badr, A., Sch, R., Rabey, H. E., Effgen, S., Ibrahim, H., Pozzi, C., Rohde, W., and Salamini, F. (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution 17, 499-510. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026330
Bekele, E. (1983). Some measures of gene diversity analysis on land race populations of Ethiopian barley. Hereditas 98, 127-143. DOI: https://doi.org/10.1111/j.1601-5223.1983.tb00587.x
Bekis, D., Mohammed, H., and Belay, B. (2021). Genetic divergence and cluster analysis for yield and yield contributing traits in lowland rice (Oryza sativa L.) genotypes at Fogera, Northwestern Ethiopia. International Journal of Advanced Research in Biological Sciences 8, 1-11. DOI: http://dx.doi.org/10.22192/ijarbs.2021.08.05.001
Birhanu, A., Tahir, Z., Tilahun, M., Tilahun, M., and Hailu, A. (2020). Performance Evaluation and Adaptation of Food Barley (Hordeum Vulgare L.) Varieties in the Highlands of North Gondar Ethiopia. American Journal of Agriculture and Forestry 8, 252-257. DOI: https://doi.org/10.11648/J.AJAF.20200806.13
Dawson, I. K., Russell, J., Powell, W., Steffenson, B., Thomas, W. T., and Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytologist 206, 913-931. DOI: https://doi.org/10.1111/nph.13266
De Ron, A. M., and Rodiño, A. P. (2023). Analysis of the genetic diversity of crops and associated microbiota 13, 2132. DOI: https://doi.org/10.3390/agronomy13082132
Degu, H. D., Tehelku, T. F., Kalousova, M., and Sato, K. (2023). Genetic diversity and population structure of barley landraces from southern Ethiopia’s Gumer district: Utilization for breeding and conservation. PloS One 18, e0279737. DOI: https://doi.org/10.1371/journal.pone.0279737
Enyew, M., Dejene, T., Lakew, B., and Worede, F. (2019). Clustering and principal component analysis of Barley (Hordeum volugare L.) Landraces for major morphological traits from North Western Ethiopia. International Journal of Agricultural Science and Food Technology 5, 58-63. DOI: https://doi.org/10.17352/2455-815X.000043
Ethiopian Biodiversity Institute. (2024). "Genetic Material Holdings". https://ebi.gov.et/biodiversity/conservation/genetic-material-holdings/ [May 1, 2024]
Faheem, M., Arain, S. M., Sial, M. A., Laghari, K. A., and Qayyum, A. (2023). Genotype by yield* trait (GYT) biplot analysis: a novel approach for evaluating advanced lines of durum wheat. Cereal Research Communications 51, 447-456. DOI: https://doi.org/10.1007/s42976-022-00298-7
Fantahun, B., Woldesemayate, T., Fadda, C., Gebrehawaryat, Y., Pe, E., and Matteo Dell Acqua. (2023). Multivariate analysis in the dissection of phenotypic variation of Ethiopian cultivated barley (Hordeum vulgare ssp Vulgare L.) genotypes. Cogent Food & Agriculture 9, 2157104 DOI: https://doi.org/10.1080/23311932.2022.2157104
Farooqi, M. Q. U., Moody, D., Bai, G., Bernardo, A., Amand, P. S., Diggle, A. J., and Rengel, Z. (2023). Genetic characterization of root architectural traits in barley (Hordeum vulgare L.) using SNP markers. Frontiers in Plant Science 14. DOI: https://doi.org/10.3389/fpls.2023.1265925
Gadissa, F., Abebe, M., and Bekele, T. (2021). Agro-morphological traits-based genetic diversity assessment in Ethiopian barley (Hordeum vulgare L.) landrace collections from Bale highlands, Southeast Ethiopia. Agriculture and Food Security 10, 1-14. DOI: https://doi.org/10.1186/s40066-021-00335-4
Gadissa, F., and Gudeta, T. B. (2023). Phenotypic characterization and seed viability test in ex-situ conserved Ethiopian cultivated barley (Hordeum vulgare L.) landraces. BMC Plant Biology 23, 613. DOI: https://doi.org/10.1186/s12870-023-04628-7
Ghonaim, M. M., Attya, A., Aly, H. G., Mohamed, H. I., and Omran, A. A. (2023). Agro-morphological, biochemical, and molecular markers of barley genotypes grown under salinity stress conditions. BMC Plant Biology 23, 526. DOI: https://doi.org/10.1186/s12870-023-04550-y
Hailu, A., Alamerew, S., Nigussie, M., Assefa, E., and Achakzai, A. K. K. (2016a). Genetic variability, heritability and genetic advance for yield and yield related traits in barley (Hordeum vulgare L.) germplasm. Middle-East Journal of Scientific Research 24, 450-458.
Hailu, A., Alamerew, S., Nigussie, M., Assefa, E., and Achakzai, A. K. K. (2016b). Study of genetic diversity in different genotypes of barley (Hordeum vulgare L.) based on cluster and principal component analysis. Agricultural Science Research Journal 6, 31-42.
IPGRI. (1994). "Descriptors for Barley: Hordeum vulgare L". International Plant Genetic Resources Institute Bioversity International.
Irnawati, I., Riswanto, F. D. O., Riyanto, S., Martono, S., and Rohman, A. (2020). The use of software packages of R factoextra and FactoMineR and their application in principal component analysis for authentication of oils. Indonesian Journal of Chemometrics and Pharmaceutical Analysis, 1-10. DOI: https://doi.org/10.22146/ijcpa.482
Jalata, Z., Garoma, B., and Nandeshwar, B. (2020). Evaluation of genetic divergence among barley genotypes based on agro-morphological characters. Current Journal of Applied Science and Technology 39, 102-110. DOI: https://doi.org/10.9734/cjast/2020/v39i3631078
Kaur, V., Aravind, J., Jacob, S. R., Kumari, J., Panwar, B. S., Pal, N., Rana, J. C., Pandey, A., and Kumar, A. (2022). Phenotypic characterization, genetic diversity assessment in 6,778 accessions of barley (Hordeum vulgare L. ssp. vulgare) germplasm conserved in National Genebank of India and development of a core set. Frontiers in Plant Science 13, 771920. DOI: https://doi.org/10.3389/fpls.2022.771920
Lema, T. Z., Masresha, S. E., Neway, M. M., and Demeke, E. M. (2022). Analysis of the technical efficiency of barley production in North Shewa Zone of Amhara regional state, Ethiopia. Cogent Economics and Finance 10, 2043509. DOI: https://doi.org/10.1080/23322039.2022.2043509
Mahalanobis, P. C. (2018). On the generalized distance in statistics. Sankhyā: The Indian Journal of Statistics, Series A (2008-) 80, S1-S7. https://www.jstor.org/stable/48723335
Manandhar, H. K., Timila, R. D., Sharma, S., Joshi, S., Manandhar, S., Gurung, S. B., Sthapit, S., Palikhey, E., Pandey, A., and Joshi, B. (2016). "A Field Guide for Identification and Scoring Methods of Diseases in the Mountain Crops of Nepal." Biodiversity International, Nepal.
Morrell, P. L., Lundy, K. E., and Clegg, M. T. (2003). Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proceedings of the National Academy of Sciences 100, 10812-10817. DOI: https://doi.org/10.1073/pnas.1633708100
Muñoz-Amatriaín, M., Cuesta-Marcos, A., Hayes, P. M., and Muehlbauer, G. J. (2014). Barley genetic variation: implications for crop improvement. Briefings in Functional Genomics 13, 341-350. DOI: https://doi.org/10.1093/bfgp/elu006
Parzies, Spoor, and Ennos. (2000). Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex-situ gene banks. Heredity 84, 476-486. DOI: https://doi.org/10.1046/j.1365-2540.2000.00705.x
Pennington, D. (2013). "Harvest Index: A Predictor of Corn Stover Yield". Michigan State University Extension, Michigan, USA.
Peterson, R. F., Campbell, A., and Hannah, A. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research 26, 496-500. DOI: https://doi.org/10.1139/cjr48c-033
Rameez, R., Jahageerdar, S., Jayaraman, J., Chanu, T. I., Bangera, R., and Gilmour, A. (2022). Evaluation of alternative methods for estimating the precision of REML-based estimates of variance components and heritability. Heredity 128, 197-208. DOI: https://doi.org/10.1038/s41437-022-00509-1
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53-65. DOI: https://doi.org/10.1016/0377-0427(87)90125-7
Shiferaw, T., Abate, B., and Lakew, B. (2020). Genetic variability and association of traits in Ethiopian barley (Hordeum vulgare L.) genotypes at Holetta, Central Ethiopia. Journal of Agricultural and Crop Research 8, 11-19. DOI: https://doi.org/10.33495/jacr_v8i1.19.171
Singh, R. K., and Chaudhary, B. D. (1977). Biometrical methods in quantitative genetic analysis. Biometrical Methods in Quantitative Genetic Analysis. DOI: https://doi.org/10.2307/2530404
Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., and Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61, 839-852. DOI: https://doi.org/10.1002/csc2.20377b
Tadesse, D., and Derso, B. (2019). The status and constraints of food barley production in the North Gondar highlands, northwestern Ethiopia. Agriculture & Food Security 8, 1-7. DOI: https://doi.org/10.1186/s40066-018-0248-3s
Visioni, A., Basile, B., Amri, A., Sanchz-Garcia, M., and Corrado, G. (2023). Advancing the conservation and utilization of barley genetic resources: insights into germplasm management and breeding for sustainable agriculture. Plants 12, 3186. DOI: https://doi.org/10.3390/plants12183186
Kifle, W.S. (2016). Review on barley production and marketing in Ethiopia. Journal of Economics and Sustainable Development 7, 91-100.
Yogender, K., Niwas, R., Nimbal, S., and Dalal, M. (2020). Hierarchical cluster analysis in barley genotypes to delineate genetic diversity. Electronic Journal of Plant Breeding 11, 742-748. https://www.ejplantbreeding.org/index.php/EJPB/article/view/3468.
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.