Histological Analysis of Somatic Embryogenesis from Immature Zygotic Embryo of Wild Banana Musa acuminata ssp. malaccensis
DOI:
https://doi.org/10.29244/jtcs.11.03.307-319Keywords:
embryogenic culture, histo-anatomy, meristematic cells, pro-embryonic masses, protoderm, tetrad-like cellsAbstract
Somatic embryogenesis, a crucial plant regeneration method, has become indispensable for crop improvement, particularly for species reliant on somatic cell manipulation techniques. Optimization of this process necessitates an understanding of the developmental stages involved. This study investigates the histological aspects of somatic embryogenesis in Musa acuminata ssp. malaccensis derived from immature zygotic embryos. Through detailed histological analysis, we aimed to elucidate the morphological changes and cellular organization occurring during the various stages of somatic embryogenesis, from induction, culture proliferation, and somatic embryo development to plantlet conversion. The initial stages of embryogenesis, characterized by nodules, were primarily composed of meristematic cells with high cell division activity. These cells contained tetrad-like structures that could develop into distinct two- and four-celled proembryoids or proembryogenic aggregates. Our histo-anatomical analysis revealed that embryogenic cultures proliferated through multiple pathways simultaneously: somatic embryo budding, proembryo formation, and pro-embryonic mass formation from both internal and peripheral cells. At the stage of somatic embryo development, embryos with a well-defined protoderm layer, containing cells with prominent nuclei and dense cytoplasm, potentially regenerate into plantlets. Furthermore, histological examination revealed the presence of procambium within mature somatic embryos, which subsequently developed into the vascular system of the complete plantlet
References
Adero, M., Tripathi, J. N., and Tripathi, L. (2023). Advances in somatic embryogenesis of banana. International Journal of Molecular Sciences 24, 10999. DOI: 10.3390/ijms241310999
Ahmad F., Martawi N.M., Poerba Y.S., de Jong H., Schouten H., and Kema G.H.J. (2020). Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theoretical and Applied Genetics 133, 3409–3418. DOI:10.1007/s00122-020-03677-y
Ardhani D.N., Maharijaya A., and Rahayu, M.S. (2024) Callus formation response from immature male flower explant of plantain banana (Musa acuminata x Musa balbisiana cv. Kepok) treated by 2,4 - D and BAP. Indonesia Journal of Agronomy 52, 101 – 109. DOI:10.24831/jai.v52i1.49008
Bidabadi S.S., and Jain S.M. (2020) Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 9, 702. DOI:10.3390/plants9060702
Borji M., Bouamama-Gzara B., Chibani F., Teyssier C., Ammar A.B., Mliki A., Zekri A., and Ghorbel A.W. (2018) Micromorphology, structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety (Avena sativa L. var ‘Meliane’). Plant Cell Tissue and Organ Culture 132, 329–342. DOI:10.1007/s11240-017-1333-1
Carneros E., Sánchez-Muñoz J., Pérez-Pérez Y., Pintos B., Gómez-Garay A., Testillano P.S. (2023). Dynamics of endogenous auxin and its role in somatic eInduction and progression in cork oak. Plants 12, 1542. DOI: 10.3390/plants12071542
De Araújo Silva‐Cardoso, I. M., Meira, F. S., Gomes, A. C., & Scherwinski‐Pereira, J. E. (2020). Histology, histochemistry, and ultrastructure of pre‐embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. Physiologia Plantarum 168, 845-875. DOI: 10.1111/ppl.13026
De Langhe E., Perrier X., Donohue M., and Denham T. (2015). The original banana split: multi-disciplinary implications of the generation of African and Pacific plantains in Island Southeast Asia. Ethnobotany Research and Application 14, 299–312. DOI:10.17348/era.14.0.299-312
Debbarma, R., Sudhakar, D., Kumar, K. K., and Soorianathasundaram, K. (2019). Morphological development and ultrastructural changes during somatic embryogenesis of popular banana cultivars. International Journal of Current Microbiology and Applied Sciences 8, 1676-1683. DOI:10.20546/ijcmas.2019.806.200
Escobedo-GraciaMedrano R.M., Maldonado-Borges J.I., Burgos-Tan M.J., Valadez-González N., and Ku-Cauich J.R. (2014). Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tissue and Organ Culture 116, 175–185. DOI:10.1007/s11240-013-0394-z
Escobedo-GraciaMedrano R. M., Enríquez-Valencia, A. J., Youssef, M., López-Gómez, P., Cruz-Cárdenas, C. I., and Ku-Cauich, J. R. (2016). Somatic Embryogenesis in Banana, Musa ssp. In “Somatic Embryogenesis: Fundamental Aspects and Applications” (V. Loyola-Vargas, and N. Ochoa-Alejo, eds), pp 381-400. Springer. DOI:10.1007/978-3-319-33705-0_21
Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: what do these terms mean in the era of molecular plant biology? Frontiers in Plant Science 10, 536. DOI: 10.3389/fpls.2019.00536
Gan, Zy., Shu, Ml., Yang, F, Wang Gf., Zhang We., and Pan Xj. (2023) Somatic embryo induction and plantlet regeneration of Canna × generalis from immature zygotic embryo. Plant Cell Tissue and Organ Culture 155, 681–692. DOI:10.1007/s11240-023-02588-2
Grapin, A., Schwendiman, J., and Teisson, C. (1996). Somatic embryogenesis in plantain banana. In Vitro-Plant 32, 66-71. DOI:10.1007/BF02823133
Handayani T, Maharijaya A, Wahyu Y, Sobir, and Witjaksono (2024) Induction, growth, and characteristics of embryonic cell suspension culture of wild bananas (Musa acuminata ssp.). In Vitro Cell and Development Biology -Plant 60, 294-308. DOI:10.1007/s11627-024-10412-5
Jafari N, Othman RY, Tan BC, and Khalid N (2015). Morphohistological and molecular profiles during the developmental stages of somatic embryogenesis of Musa acuminata cv. ‘Berangan’ (AAA). Acta Physiology Plant 37, 45. DOI:10.1007/s11738-015-1796-9
Jalil M, Chee WW, Othman RY, and Khalid N (2008). Morpho-histological examination on somatic embryogenesis of Musa acuminata cv. Mas (AA). Scientia Horticulture 117, 335 – 340. DOI: 10.1016/j.scienta.2008.05.018
Juarez-Escobar, J., Bojórquez-Velázquez, E., Elizalde-Contreras, J. M., Guerrero-Analco, J. A., Loyola-Vargas, V. M., Mata-Rosas, M., and Ruiz-May, E. (2021). Current proteomic and metabolomic knowledge of zygotic and somatic embryogenesis in plants. International Journal of Molecular Sciences 22, 11807. DOI:10.3390/ijms222111807
Justine, A. K., Kaur, N., and Pati, P. K. (2022). Biotechnological interventions in banana: current knowledge and future prospects. Heliyon 8, 11. DOI:10.1016/j.heliyon.2022.e11636
Li, M., Wrobel-Marek, J., Heidmann, I., Horstman, A., Chen, B., Reis, R., Angenent G.C., and Boutilier, K. (2022). Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiology 188, 1095 – 1110. DOI:10.1093/plphys/kiab558
López, J., Rayas, A., Medero, V., Santos, A., Basail, M., and Beovides, Y. (2022). Somatic Embryogenesis in Banana (Musa spp.). In “Somatic Embryogenesis. Methods in Molecular Biology” (M.A. Ramírez-Mosqueda, eds.), pp 97-110. Humana, New York. DOI: 10.1007/978-1-0716-2485-2_8
Murashige T., and Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 473–497. DOI:10.1111/j.1399-3054.1962.tb080 52.x
Nasution R.E. (1991). A taxonomic study of the Musa acuminata Colla with its intraspecific taxa in Indonesia. Memoir of Tokyo University of Agriculture 32, 1−122.
Navarro C., Escobedo R.M., and Mayo A. (1997). In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tissue and Organ Culture 51, 17–25. DOI:10.1023/A:1005965030075
Pillay, M., and Tripathi, L. (2007). Banana breeding In “Breeding Major Food Staples” (M.S. Kang and P.M. Priyadarshan, eds.), pp 393-428. Blackwell Publishing. DOI: 10.1002/9780470376447.
Poerba Y.S., Martanti D., and Ahmad F. (2019). Genetic variation of wild Musa acuminata Colla from Indonesia. Biotropia 26,115 -126.
Ponni, T. G., and Nair, A. S. (2019). Somatic embryogenesis to overcome low seed viability and conserve wild banana (Ensete superbum (Roxb.) Cheesman). In Vitro Cellular and Developmental Biology-Plant 55, 371-379. DOI:10.1007/s11627-019-09998-y
Rocha D.I., Kurczyńska E., Potocka I., Steinmacher D.A., and Otoni W.C. (2016). Histology and histochemistry of somatic embryogenesis In “Somatic Embryogenesis: Fundamental Aspects and Applications” (V. Layola-Vargas and N. Ochoa-Alejo, eds.), pp 471-494. Springer, Cham. DOI:10.1007/978-3-319-33705-0_26
Rustagi, A., Shekhar, S., Kumar, D., Lawrence, K., Bhat, V., and Sarin, N. B. (2019). High speed regeneration via somatic embryogenesis in elite Indian banana cv. Somrani monthan (ABB). Vegetos 32, 39-47. DOI:10.1007/s42535-019-00005-8
Sass J.E. (1951) “Botanical Micro Technique”. 2nd ed. The Iowa State College Press, Iowa
Schumann G., Ryschka U., Schulze J., and Klocke E. (1995). Anatomy of somatic embryogenesis. In “Somatic Embryogenesis and Synthetic Seed I. Biotechnology in Agriculture and Forestry” (Y.P.S. Bajaj, ed.), pp 71-86. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-662-03091-2_6
Sidha, M., Suprasanna, P., Bapat, V. A., Kulkarni, U. G., and Shinde, B. N. (2007). Developing somatic embryogenic culture system and plant regeneration in banana. Bhabha Research Centre (BARC) Newsletter 285, 153-161.
Sivanesan, I., Nayeem, S., Venkidasamy, B., Kuppuraj, S. P., Rn, C., and Samynathan, R. (2022). Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biologia Futura 73, 259-277. DOI:10.1007/s42977-022-00126-3
Strosse, H., Domergue, R., Panis, B., Escalant, J.-V., and Côte, F., (2003). Banana and plantain embryogenic cell suspensions In “INIBAP Technical Guidelines 8” (A. Vezina and C. Picq, eds.), pp 6-20. The International Network for the Improvement of Banana and Plantain, Montpellier.
Sugimoto, K., Temman, H., Kadokura, S., and Matsunaga, S. (2019). To regenerate or not to regenerate: factors that drive plant regeneration. Current Opinion in Plant Biology 47, 138-150. DOI: 10.1016/j.pbi.2018.12.002
Thorpe T.A., and Stasolla C. (2001). Somatic embryogenesis In “Current Trends in the Embryology of Angiosperms” (S.S. Bhojwani and W.Y Soh, eds.), pp 279 - 336. Kluwer Academic Publishers, Norwell. DOI:10.1007/978-94-017-1203-3_12
Thingnam, S. S., Lourembam, D. S., Tongbram, P. S., Lokya, V., Tiwari, S., Khan, M. K., and Thangjam, R. (2023). A perspective review on understanding drought stress tolerance in wild banana genetic resources of northeast India. Genes 14, 370.
Williams E.G., and Maheswaran G. (1986). Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Annals Botany 57, 443–462. DOI: 10.1093/oxfordjournals.aob.a087127
Witjaksono, and Litz R.E. (1999a). Maturation of avocado somatic embryos and plant recovery. Plant Cell Tissue and Organ Culture 58, 141–148. DOI:10.1023/A:1006344127546
Witjaksono, and Litz R.E. (1999b). Induction and growth characteristics of embryogenic avocado cultures. Plant Cell Tissue and Organ Culture 58,19–29. DOI:10.1007/s002990050563
Zein El Din, A.F.M., Abd Elbar, O.H., Al Turki, S.M., Ramadan, K.M.A. El-Beltagi, H.S., Ibrahim, H.A., Gadalla, E.G., Shams El-Din, I.M., Ibrahim, I.S., Farag, R., et al. (2021). Morpho-anatomical and biochemical characterization of embryogenic and degenerative embryogenic calli of Phoenix dactylifera L. Horticulturae 7, 393. DOI: 10.3390/horticulturae7100393
Zhang M., Wang A., Qin M., Qin X.,Yang S., Su S., Sun Y., and Zhang L. (2021) Direct and indirect somatic embryogenesis induction in Camellia oleifera Abel Front. Plant Science 12, 644389. DOI:10.3389/fpls.2021.644389
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.