Impact of Salinity Stress on Soybean Growth and Yield under Saturated Soil Culture in Tidal Lands: A Comparative Study of Tolerant Varieties

Authors

  • Siti Nurminah Nasution Graduate Program in Agronomy and Horticulture, Bogor Agricultural University, Indonesia, Jalan Meranti, IPB Darmaga Campus, West Java, Indonesia 16680
  • Munif Ghulamahdi Department of Agronomy and Horticulture, Bogor Agricultural University, Jalan Meranti, IPB Darmaga Campus, West Java, Indonesia 16680 https://orcid.org/0000-0001-8556-5104
  • Maya Melati Department of Agronomy and Horticulture, Bogor Agricultural University, Jalan Meranti, IPB Darmaga Campus, West Java, Indonesia 16680 https://orcid.org/0000-0002-2503-4528

DOI:

https://doi.org/10.29244/jtcs.11.03.287-298

Keywords:

El-Niño, leaf greenness, NaCl, seawater intrusion, tolerant

Abstract

Salinity stress, intensified by climate change events such as El Niño and drought, presents a significant challenge to soybean production in tidal lands. This study evaluated soybean varieties’ growth, tolerance, and yield under varying salinity conditions within a saturated water cultivation system. The experiment was conducted from February to May 2024 at the IPB Experimental Station in Leuwikopo, Bogor, Indonesia, using soil samples collected from type B tidal lands in Mulyasari Village, Banyuasin, South Sumatra. A completely randomized design (CRD) was employed with three factors and three replications each. The first factor was soybean variety (“Demas-1” and “Detap-1”), the second was soil salinity (0 and 2000 ppm NaCl), and the third was irrigation salinity at different growth stages (control, 2000 ppm NaCl before/during flowering, and 2000 ppm NaCl after flowering). The results demonstrated that the “Demas-1” variety exhibited superior growth characteristics, including higher leaf greenness, dry weight of root nodules, and number of filled pods per plant. Exposure to soil salinity of 2000 ppm NaCl led to a significant reduction in plant height (29.38%), leaf number (38.01%), leaf greenness (28.67%), dry weight (49.90%-60.80%), and filled pods per plant (55.51%), while increasing plant toxicity (108%). Irrigation with 2000 ppm NaCl further exacerbated these negative impacts, resulting in decreased leaf greenness (15.42%-18.06%) and filled pods per plant (17.84%-23.94%). The interaction between soybean variety, soil salinity, and irrigation salinity significantly influenced the number of filled pods per plant. The combination of any soybean variety with 2000 ppm NaCl resulted in a reduction of filled pods per plant. Moreover, applying saline irrigation after flowering to saline soil decreased the number of filled pods per plant by 64.68%. These findings highlight the critical importance of selecting tolerant soybean varieties and implementing effective irrigation management strategies to mitigate the adverse effects of salinity on soybean production in tidal lands.

References

Abd-Alla, M. H., Nafady, N. A., Bashandy, S. R., and Hassan, A.A. (2019). Mitigation of the effect of salt stress on the nodulation, nitrogen fixation, and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 10, 1-11. DOI: https://doi.org/10.1016/j.rhisph.2019.100148.

Basuni. (2017). “Respon Morfofisiologi Tanaman Jagung terhadap Tingkat Salinitas dan Amelioran pada Sistem Budidaya Jenuh Air di Lahan Sulfat Masam”. [Thesis]. Fakultas Pertanian, IPB University.

Borucki, W., and Sujkowska, M. (2007). The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants. Acta Physiologiae Plantarum 30, 293–301. DOI: https://doi.org/10.1007/s11738-007-0120-8.

Brown, C.E., Pezeshki, S.R., and DeLaune, R.D. (2006). The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system. Environmental and Experimental Botany 58, 140–148. DOI: https://doi.org/10.1016/j.envexpbot.2005.07.006.

Castillo, E.G., Tuong, T.P., Ismail, A.M., and Inubushi, K. (2007). Response to salinity in rice: comparative effects of osmotic and ionic stresses. Plant Production Science 10, 159-170. DOI: https://doi.org/10.1626/pps.10.159.

Cordovilla, M.P., Ocaña, A., Ligero, F., and Lluch, C. (1995). Salinity effects on growth analysis and nutrient composition of grain legumes‐rhizobium symbiosis. Journal of Plant Nutrition 18, 1595–1609. https://doi.org/10.1080/01904169509365006.

Dubey, A.K., Khatri, K., Jha, B., and Rathore, M.S. (2021). The novel galactosyl transferaselike (SbGalT) gene from Salicornia brachiata maintains photosynthesis and enhances abiotic stress tolerance in transgenic tobacco. Gene 786, 1-17. DOI: https://doi.org/10.1016/j.gene.2021.145597.

Ghulamahdi, M., Aziz, S.A., Lubis, I., Abimanyu, B., Shiraiwa, T., and Taylor, P. (2024). Effect of planting distance and foliar fertilizer on soybean growth and yield in saturated soil culture in tidal swamp. Universal Journal of Agricultural Research 12, 539-545. DOI: https://doi.org/10.13189/ujar.2024.120401.

Ghulamahdi, M., Aziz, S.A., Melati, M., Dewi, N., and Rais, S.A. (2006). Aktivitas nitrogenase, serapan hara dan pertumbuhan dua varietas kedelai pada kondisi jenuh air dan kering. Buletin Agronomi 34, 32-38. https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/1272/376.

Hanin, M., Ebel, C., Ngom, M., Laplaze, L., and Masmoudi, K. (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7, 1-17. DOI: https://doi.org/10.3389/fpls.2016.01787.

Ibrahim, W., Ahmed, I.M., Chen, X., and Wu, F. (2017). Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/ root ultrastructure. Environmental Science and Pollution Research 24, 9417-9427. https://doi.org/10.1007/s11356-017-8611-7.

Ilangumaran, G., Schwinghamer, T.D., and Smith, D.L. (2021) Rhizobacteria from root nodules of an indigenous legume enhance salinity stress tolerance in soybean. Frontiers in Sustainable Food Systems 4, 1-18. DOI: https://doi.org/10.3389/fsufs.2020.617978.

Karuniasa, M., and Pambudi, P.A. (2022). The analysis of the El Niño phenomenon in the East Nusa Tenggara Province, Indonesia. Journal of Water and Land Development 52, 180-185. DOI: http://dx.doi.org/10.24425/jwld.2022.140388.

Khan, F., Siddique, A.B., Shabala, S., Zhou, M., and Zhao, C. (2023). Phosphorus plays key roles in regulating plants physiological responses to abiotic stresses. Plants 12, 1-29. https://doi.org/10.3390/plants12152861.

Lawson, T., and Milliken, A.L. (2023). Photosynthesis–beyond the leaf. New Phytologist 238, 55–61. DOI: https://doi.org/10.1111/nph.18671.

Liu, X., and Suarez, D.L. (2021). Lima bean growth, leaf stomatal and nonstomatal limitations to photosynthesis, and 13C discrimination in response to saline irrigation. Journal of the American Society for Horticultural Science 146, 132-144. DOI: https://doi.org/10.21273/JASHS04996-20.

Ma, Y., Dias, M., and Freitas, H. (2020). Drought and salinity stress responses and microbeinduced tolerance in plants. Frontiers in Plant Science 11, 1-18. https://doi.org/10.3389/fpls.2020.591911.

Mohanavelu, A., Naganna, S.R., and Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts, and mitigation strategies. Agriculture 11, 1-17. DOI: https://doi.org/10.3390/agriculture11100983.

Munns, R., Day, D.A., Fricke, W., Watt, M., Arsova, B., Barkla, B.J., Bose, J., Byrt, C.S., Chen, Z., Foster, K.J., et al. (2019). Energy costs of salt tolerance in crop plants. New Phytologist 225, 1072-1090. https://doi.org/10.1111/nph.15864.

Osman, H.S., and Salim, B.B.M. (2016). Influence of exogenous application of some phytoprotectants on growth, yield, and pod quality of snap bean under NaCl salinity. Annals of Agricultural Sciences 61, 1–13. DOI: https://doi.org/10.1016/j.aoas.2016.05.001.

Otie, V., Udo, I., Shao, Y., Itam, M.O., Okamoto, H., An, P., and Eneji, E.A. (2021). Salinity effects on morpho-physiological and yield traits of soybean (Glycine max L.) as mediated by foliar spray with brassinolide. Plants 10, 1-22. https://doi.org/10.3390/plants10030541.

Pantalone, V., Kenworthy, W., Slaughter, L.H., and James, B.R. (1997). Chloride tolerance in soybean and perennial Glycine accessions. Euphytica 97, 235–239. DOI: https://doi.org/10.1023/A:1003068800493.

Pujiwati, H., Suharjo, U.J.K., Prameswari, W., Husna, M., Murcitro, B.G., Ginting, S., and Susilo, E. (2021). Morphological and physiological performances of 18 soybean varieties exposed to salinity stress. Jurnal Agronomi Indonesia 49, 251-258. DOI: https://dx.doi.org/10.24831/jai.v49i3.37819.

Romadloni, A., and Wicaksono, K.P. (2018). Pengaruh beberapa level salinitas terhadap perkecambahan kacang hijau (Vigna radiata L.) varietas Vima 1. Jurnal Produksi Tanaman 6, 1663-1670. https://protan.studentjournal.ub.ac.id/index.php/protan/article/view/825.

Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants10, 1-37. DOI: https://doi.org/10.3390/antiox10020277.

Sahuri. (2023). “Efisiensi Lahan dan Waktu Tanam Sisip Jagung pada Beberapa Varietas Kedelai dengan Budidaya Jenuh Air di Lahan Pasang Surut.”[Thesis]. Fakultas Pertanian, IPB University.

Saparso, Sudarmaji, A., and Musthafa, M.B. (2023). Physiological aspects of the growth of corns (Bonanza 9-F1 and Bisi-18) to air aalinity conditions on coastal area In “Proceedings of the 3rd International Conference on Sustainable Agriculture for Rural Development (ICSARD 2022)” (S.B. Sulistyo et al., eds.), pp 362-372, Jawa Tengah, Indonesia. Atlantis Press.

Shrivastava, P., and Kumar, R. (2015). Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22, 123-131. DOI: https://doi.org/10.1016/j.sjbs.2014.12.001.

Sihotang, T. (2021). Pengaruh cekaman salinitas terhadap pertumbuhan tanaman semusim. Fruitset Sains: Jurnal Pertanian Agroteknologi 9, 45-51. https://www.ejournal.iocscience.org/index.php/Fruitset/article/download/1813/1468/5785.

Sobir, Miftahudin, and Helmi, S. (2018). Respon morfologi dan fisiologi genotipe terung (Solanum melongena L.) terhadap cekaman salinitas. Jurnal Hortikultura Indonesia 9, 131-138. https://doi.org/10.29244/jhi.9.2.131-138.

Susilawati, A., Nursyamsi, D., and Syakir, M. (2016). Optimalisasi penggunaan lahan rawa pasang surut mendukung swasembada pangan nasional. Jurnal Sumberdaya Lahan 10, 51-64.

Toyip, Ghulamahdi, M., Sopandie, D., Aziz, S.A., Sutandi, A., and Purwanto, M.Y.J. (2019). Physiological responses of four soybean varieties and their effect on yield in several saturated soil culture modification. Biodiversitas 20, 2266-2272. DOI: https://doi.org/10.13057/biodiv/d200822.

Wahyuningsih, S., Kristiono, A., and Taufiq, A. (2017). Pengaruh jenis amelioran terhadap pertumbuhan dan hasil kacang hijau di tanah salin. Buletin Palawija 15, 69-77.

Waititu, J.K., Zhang, C., Liu, J., and Wang, H. (2020). Plant non-coding RNAs: origin, biogenesis, mode of action and their roles in abiotic stress. International Journal of Molecular Sciences 21, 1-22. DOI: https://doi.org/10.3390/ijms21218401.

Wang, F., Sun, H., Rong, L., Li, Z., An, T., Hu, W., and Ye, Z. (2021). Genotypic-dependent alternation in D1 protein turnover and PSII repair cycle in psf mutant rice (Oryza sativa L.), as well as its relation to light-induced leaf senescence. Plant Growth Regulation 95, 121–136. DOI: https://doi.org/10.1007/s10725-021-00730-8.

Wang, Q., Liu, J., and Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science 9, 1-8. DOI: https://doi.org/10.3389/fpls.2018.00313.

Wang, X., Chen, Z., and Sui, N. (2024) Sensitivity and responses of chloroplasts to salt stress in plants. Frontiers in Plant Science 15, 1-11. DOI: https://doi.org/10.3389/fpls.2024.1374086.

Wali, S.U., Gada, M.A., Umar, K.J., Abba, A., and Umar, A. (2021). Understanding the causes, effects, and remediation of salinity in irrigated fields: a review. International Journal of Agriculture and Animal Production 1, 9-42. DOI: https://doi.org/10.55529/ijaap.11.9.42.

Xu, C., and Mou, B. (2016). Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. Journal of the American Society for Horticultural Science 141, 12-21. DOI: https://doi.org/10.21273/JASHS.141.1.12.

Yan, S., Chong, P., and Zhao, M. (2022). Effect of salt stress on the photosynthetic characteristics and endogenous hormones: a comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. Plant Signaling and Behavior 17, 1-15. DOI: https://doi.org/10.1080/15592324.2022.2031782.

Zhang, Y., Kaiser, E., Marcelis, L.F.M., Yang, Q., and Li, T. (2020). Salt stress and fluctuating light have separate effects on photosynthetic acclimatization, but interactively affect biomass. Plant, Cell, and Environment 43, 2192-2206. https://doi.org/10.1111/pce.13810

Zhao, K.F., Song, J., Fan, H., Zhou, S., and Zhao, M. (2010). Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Journal of Integrative Plant Biology 52, 468-475. DOI: https://doi.org/10.1111/j.1744-7909.2010.00947.x

Downloads

Published

2024-10-21

How to Cite

Nasution, S. N., Ghulamahdi, M., & Melati, M. (2024). Impact of Salinity Stress on Soybean Growth and Yield under Saturated Soil Culture in Tidal Lands: A Comparative Study of Tolerant Varieties. Journal of Tropical Crop Science, 11(03), 287–298. https://doi.org/10.29244/jtcs.11.03.287-298