Dynamics of Nutrient Concentrations, Endogenous Hormones, Photosynthetic Capacity, and Phenological Changes in Black Orchid (Coelogyne pandurata Lindl.) from the Vegetative to Generative Phase

Authors

DOI:

https://doi.org/10.29244/jtcs.12.01.215-234

Keywords:

auxin, carotene reduction, chlorophyll content, gibberellin, nitrogen concentration, phenology

Abstract

The black orchid (Coelogyne pandurata Lindl.) is one of the native Indonesian orchids from Borneo island. This study analyzed the dynamics of pigments, photosynthetic capacity, endogenous hormones, nutrient concentrations, and phenology across the vegetative to generative stages of the black orchid. The plant materials are one-year-old plants after splitting from the mother plants. Endogenous hormones, nutrient and pigment concentrations, and leaf photosynthetic capacity were measured during vegetative and generative phases. Chlorophyll, anthocyanins, and carotenoids were analyzed using UV-VIS spectrophotometry, Nitrogen (N) was analyzed by the Kjeldahl method, phosphorus (P) and potassium (K) by the Bray 1 method and Flame Photometry, and organic carbon by the Walkley- Black method with titration. The hormone levels were analyzed using HPLC, and photosynthetic capacity was determined using a Li-Cor 6800 system. Phenological changes in leaves, bulbs, and flowers were recorded. Results showed total chlorophyll increased from 1.96 to 2.36 mg/g from the vegetative to the generative stage while carotene slightly declined. Leaf nitrogen rose from 1.54% to 1.70%, bulb nitrogen decreased from 0.67% to 0.45%, whereas the C/N ratio increased from 65.24 to 85.36 from the vegetative to the generative phase. Flower nitrogen was 1.50%, and phosphorus was 0.17%. IAA in leaves decreased from 25.12 to 21.37 ng.g⁻¹ dry weight post-flowering, while gibberellin in bulbs increased from 12.28 to 12.96 ng.g⁻¹ dry weight. Zeatin in bulbs declined from 10.52 to 8.81 ng g⁻¹ dry weight. Photosynthesis peaked at 2.73 μmol. m⁻².s⁻¹ in early generative stages and then declined. Photosynthetic photon flux density and stomatal conductance decreased, reducing water and CO₂ exchange efficiency, while net assimilation and transpiration rates showed no significant changes. These physiological adjustments, including increased chlorophyll levels, changes in nitrogen allocation, and fluctuations in hormone concentrations, reflect the plant’s adaptive strategies to meet higher energy demands during reproductive growth, ensuring efficient resource distribution for flowering.

Author Biographies

Pebra Heriansyah, Graduate School, Department of Agronomy and Horticulture, IPB University. Jl. Meranti, IPB Dramaga Bogor 16680, Indonesia

Universitas Islam Kuantan Singingi, Jl. Gatot Subroto KM 7, Kebun Nenas, Teluk Kuantan, Sungai Jering,
Kuantan Singingi, Kabupaten Kuantan Singingi, Teluk Kuantan, Indonesia

Sandra Arifin Aziz, Department of Agronomy and Horticulture, IPB University, Jl. Meranti, IPB Dramaga Campus,Bogor, Indonesia

IPB University Tropical Biopharmaca Research Center, Jl. Taman Kencana, IPB Taman Kencana Campus,
Bogor 16128, Indonesia

Waras Nurcholis, Department of Agronomy and Horticulture, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia

IPB University Tropical Biopharmaca Research Center, Jl. Taman Kencana, IPB Taman Kencana Campus,
Bogor 16128, Indonesia

References

Ahmad, S., Lu, C., Gao, J., Ren, R., Wei, Y., Wu, J., Jin, J., Zheng, C., Zhu, G., and Yang, F. (2021). Genetic insights into the regulatory pathways for continuous flowering in a unique orchid Arundina graminifolia. BMC Plant Biology 21, 1–13. DOI: https://doi.org/10.1186/s12870-021-03350-6.

Ahmad, S., Peng, D., Zhou, Y., and Zhao, K. (2022). The genetic and hormonal inducers of continuous flowering in orchids: an emerging view. Cells 11, 657. DOI: https://doi.org/10.3390/cells11040657.

Alwan, S.H., Owen, M.A., Omar, O.A., and Salih, Z.K. (2023). Effect of biochar application and foliar application of gibberellin and cytokinin on growth and flowering of Chinese carnations Dianthus chinensis. IOP Conference Series: Earth and Environmental Science 1158, 042016. DOI: https://doi.org/10.1088/1755- 1315/1158/4/042016.

Anuar, N., Mahmad, N., Wafa, S.N., Abdullah, S., and Hashimah, E. (2017). Effects of zeatin and gibberellic acid on regeneration and in vitro flowering of Phlox paniculata L. Journal of Science and Technology 11, 54–65. DOI: https://www.proquest.com/docview/1930756388.

Biswas, S.S., Singh, D.R., De, L.C., Kalaivanan, N.S., Pal, R., and Janakiram, T. (2021). A comprehensive scenario of orchid nutrition–a review. Journal of Plant Nutrition 44, 905–917. DOI: https://doi.org/10.1080/01904167.2021.1871758.

Blanchard, M.G., and Runkle, E.S. (2008). Benzyl adenine promotes flowering in Doritaenopsis and Phalaenopsis. Journal of Plant Growth Regulation 27, 141–150. DOI: https://doi.org/10.1007/s00344-008-9040-0.

Bonora, M., Patergnani, S., Rimessi, A., De Marchi, E., Suski, J.M., Bononi, A., Giorgi, C., Marchi, S., Missiroli, S., Poletti, F., Wieckowski, M.R., and Pinton, P. (2012). ATP synthesis and storage. Purinergic Signalling 8, 343–357. DOI: https://doi.org/10.1007/s11302-012-9305-8.

Caemmerer, S. von, and Farquhar, G.D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387. DOI: https://doi.org/10.1007/BF00384257.

Cameron, D.D., Preiss, K., Gebauer, G., and Read, D.J. (2009). The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytologist 183, 358–364. DOI: https://doi.org/10.1111/j.1469-8137.2009.02853.x.

Campos, K.O., and Kerbauy, G.B. (2004). Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). Journal of Plant Physiology 161, 1385–1387. DOI: https://doi.org/10.1016/j.jplph.2004.07.008.

Cardoso, J.C., Ono, E.O., and Rodrigues, J.D. (2010). Gibberellic acid and water regime in the flowering induction of Brassocattleya and Cattleya hybrid orchids. Horticultura Brasileira 28, 395–398. DOI: https://doi.org/10.1590/S0102-05362010000400003.

Cong, N., Shen, M., and Piao, S. (2016). Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 084. DOI: https://doi.org/10.1093/jpe/rtw084.

De, L.C. (2020). “Good Agricultural Practices of Commercial Orchids” pp 53–64. Vigyan Varta.

Doorn, W.G., and Ketsa, S. (2005). Pollination-induced changes in the morphology and physiology of dendrobium orchid flowers prior to fertilization: the roles of ethylene and auxin. Horticultural Reviews 48, 1–36. DOI: https://doi.org/10.1002/9781119750802.ch1.

Duursma, R.A., Payton, P., Bange, M.P., Broughton, K.J., Smith, R.A., Medlyn, B.E., and Tissue, D.T. (2013). Near-optimal response of instantaneous transpiration efficiency to vapor pressure deficit, temperature, and CO2 in cotton (Gossypium hirsutum L.). Agricultural and Forest Meteorology 168, 168–176. DOI: https://doi.org/10.1016/j.agrformet.2012.09.005.

Eburneo, L., Ribeiro-Júnior, N.G., Karsburg, I.V., Rossi, A.A.B., and Silva, I.V. (2017). Anatomy and micromorphometric analysis of leaf Catasetum x apolloi Benelli & Grade with addition of potassium silicate under different light sources. Brazilian Journal of Biology 77, 140–149. DOI: https://doi.org/10.1590/1519-6984.12015.

Feng, J.-Q., Huang, W., Wang, J.-H., and Zhang, S.-B. (2021). Different strategies for photosynthetic regulation under fluctuating light in two sympatric Paphiopedilum species. Cells 10, 1451. DOI: https://doi.org/10.3390/cells10061451.

Gajdošová, S., Spíchal, L., Kamínek, M., Hoyerová, K., Novák, O., Dobrev, P.I., Galuszka, P., Klíma, P., Gaudinová, A., Žižková, E., Hanuš, J., Dančák, M., Trávníček, B., Pešek, B., Krupička, M., Vaňková, R., Strnad, M., and Motyka, V. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62, 2827– 2840. DOI: https://doi.org/10.1093/jxb/erq457.

Hader, D.-P. (2022). Photosynthesis in plants and algae. Anticancer Research 42, 5035–5041. DOI: https://doi.org/10.21873/anticanres.16012.

Hajong, S., Kumaria, S., and Tandon, P. (2013). Comparative study of key phosphorus and nitrogen metabolizing enzymes in mycorrhizal and non-mycorrhizal plants of Dendrobium chrysanthum Wall. ex Lindl. Acta Physiologiae Plantarum 35, 2311–2322. DOI: https://doi.org/10.1007/s11738-013-1268-z.

Hartati, S., and Darsana, L. (2017). Karakterisasi anggrek alam secara morfologi dalam rangka pelestarian plasma nutfah. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy 43, 133. DOI: https://doi.org/10.24831/jai.v43i2.10419.

Jindamol, H., Kasemsap, P., and P.B. (2019). Water use and photosynthesis of Dendrobium Sonia ‘Earsakul’ under water deficit stress. Agriculture and Natural Resources. DOI: https://doi.org/10.34044/j.anres.2019.53.1.10.

He, J., Xin, P., Ma, X., Chu, J., and Wang, G. (2020). Gibberellin metabolism in flowering plants: an update and perspectives. Frontiers in Plant Science 11. DOI: https://doi.org/10.3389/fpls.2020.00532.

Hegde, S.M., and Krishnaswamy, K. (2021). Studies on the phenology of some terrestrial orchids of Western Ghats, India. Plant Science Today 8, 3 DOI: https://doi.org/10.14719/pst.2021.8.3.1233.

Henry, R.J., Furtado, A., and Rangan, P. (2020). Pathways of photosynthesis in non-leaf tissues. Biology 9, 438. DOI: https://doi.org/10.3390/ biology9120438.

Heriansyah, P., Aziz, S.A., Sukma, D., and Nurcholis, W. (2025). Antioxidant capacity of Coelogyne pandurata extracts at different phenological phases. Revista Brasileira de Engenharia Agrícola e Ambiental 29, 2. DOI: https://doi.org/10.1590/1807-1929/agriambi.v29n2e279352.

Herrera-Rus, I., Pastor, J.E., and Juan, R. (2020). Fungal colonization is associated with the phenological stages of a photosynthetic terrestrial temperate orchid from the Southern Iberian Peninsula. Journal of Plant Research 133, 807–825. DOI: https://doi.org/10.1007/s10265-020-01225-9.

Hogewoning, S.W., van den Boogaart, S.A.J., van Tongerlo, E., and Trouwborst, G. (2021). CAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral, and CO2. Plant Cell and Environment 44, 3. DOI: https://doi.org/10.1111/pce.13960.

Huang, J.-Z., Bolaños-Villegas, P., and Chen, F.-C. (2021). “Regulation of Flowering in Orchids” pp 73–94. Springer. DOI: https://doi.org/10.1007/978-3-030-66826-6_6.

Ichinose, J.G. dos S., Mantovani, C., Mazzini- Guedes, R.B., Pivetta, K.F.L., de Faria, R.T., Bôas, R.L.V., and Hoshino, R.T. (2018). Plant development and nutrient uptake rate in Dendrobium nobile Lindl. Journal of Plant Nutrition 41, 1937–1945. DOI: https://doi.org/10.1080/01904167.2018.1482913.

Inkham, C., Panjama, K., Sato, T., and Ruamrungsri, S. (2022). Effect of N source on growth and n uptake of hippeastrum using 15n tracers. The Horticulture Journal 91, UTD-308. DOI: https://doi.org/10.2503/hortj.UTD-308.

Karoojee, S., Noypitak, S., and Abdullakasim, S. (2021). Determination of total nitrogen content in fresh leaves and leaf powder of Dendrobium orchids using near-infrared spectroscopy. Horticulture, Environment, and Biotechnology 62, 31–40. DOI: https://doi.org/10.1007/s13580-020-00301-2.

Kępczyńska, E., and Orłowska, A. (2021). Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during the induction phase in relation to somatic embryo formation. Planta 253, 67. DOI: https://doi.org/10.1007/s00425-021-03582-8.

Khalid, A., and Aftab, F. (2020). Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular & Developmental Biology - Plant 56, 377–389. DOI: https://doi.org/10.1007/s11627-019-10047-x.

Khan, F., Siddique, A.B., Shabala, S., Zhou, M., and Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 12, 2861. DOI: https://doi.org/10.3390/plants12152861.

Kobayashi, K., Suetsugu, K., and Wada, H. (2021). The leafless orchid, Cymbidium macrorhizon, performs photosynthesis in the pericarp during the fruiting Season. Plant and Cell Physiology 62, 472–481. DOI: https://doi.org/10.1093/pcp/pcab006.

Kubota, S., Muramatsu, Y., Matsuura, M., Ito, M., Sumiyoshi, H., and Koshioka, M. (2009). The growth and flowering of Odontioda orchids are stimulated by nitrogen application. Horticultural Research (Japan) 8, 175–180. DOI: https://doi.org/10.2503/hrj.8.175.

Kumar, S., Kumar, S., and Mohapatra, T. (2021). Interaction between macro- and micro-nutrients in. Frontiers in Plant Science 12. DOI: https://doi.org/10.3389/fpls.2021.665583.

Kumudini, B.S., and Patil, S.V. (2019). Role of plant hormones in improving photosynthe¬sis. Photosynthesis. Productivity and Envi¬ronmental Stress, 215–240. DOI: https://doi.org/10.1002/9781119501800.ch11.

Li, S., Hye, W., An, R., Gong, C., and Seonghoe, T. (2021). Flowering and flowering genes: from model plants to orchids. Horticulture, Environ¬ment, and Biotechnology 62, 135–148. DOI: https://doi.org/10.1007/s13580-020-00309-8.

Lin, J.-A., Susilo, H., Lei, J.-Y., and Chang, Y.-C.A. (2019). Effects of fertilizer nitrogen shortly before forcing through flowering on carbon-nitrogen composition and flowering of Phalaenopsis. Scientia Horticulturae 252, 61–70. DOI: https://doi.org/10.1016/j.scienta.2019.02.006.

Linskens, H.-F., and Jackson, J.F. (1987). “High- Performance Liquid Chromatography in Plant Sciences.” Springer. DOI: https://doi.org/10.1007/978-3-642-82951-2.

Loreto, F., Di Marco, G., Tricoli, D., and Sharkey, T.D. (1994). Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. Photosynthesis Research 41, 397–403. DOI: https://doi.org/10.1007/BF02183042.

Lori, A.B., Derek, A., Nancy, S., John, P., Judy, B., and Jeanne, P. (2018). Using phenological monitoring in situ and historical records to de¬termine environmental triggers for emergence and anthesis in the rare orchid Platanthera praeclara Sheviak & Bowles. Global Ecology and Conservation 16, e00461. DOI: https://doi.org/10.1016/j.gecco.2018.e00461.

Matsumoto, T.K. (2006). Gibberellic acid and benzyl adenine promote early flowering and vegetative growth of Miltoniopsis orchid. HortScience 41, 131–135. DOI: https://doi.org/10.21273/HORTSCI.41.1.131.

Melo Ferreira, W. de, Kerbauy, G.B., Kraus, J.E., Pescador, R., and Suzuki, R.M. (2006). Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. Journal of Plant Physiology 163, 1126–1134. DOI: https://doi.org/10.1016/j.jplph.2005.07.012.

Minasiewicz, J., Zwolicki, A., Figura, T., Novotná, A., Bocayuva, M.F., Jersáková, J., and Selosse, M.-A. (2023). Stoichiometry of carbon, nitrogen, and phosphorus is closely linked to trophic modes in orchids. BMC Plant Biology 23, 422. DOI: https://doi.org/10.1186/s12870-023-04436-z.

Muhammad-Asyraf, K.-A., Mazumdar, P., Lum, S., and Harikrishna, J.A. (2021). The number of Dendrobium hybrid flowers and the curvature of their pedicels are influenced by the application of gibberellic acid and indole-3-acetic acid. Biology Bulletin 48, 740–745. DOI: https://doi.org/10.1134/S1062359021130057.

Netlak, P., Imsabai, W., Munné-Bosch, S., Leethiti, P., and van Doorn, W.G. (2022). Identification of indole-3-acetic acid as an important hormone in post–pollination of Dendrobium orchids and interaction of other hormones. Agriculture and Natural Resources 56. DOI: https://doi.org/10.34044/j.anres.2021.56.1.14.

Odoom, A., and Ofosu, W. (2024). Role of phosphorus in the photosynthetic dark phase biochemical pathways. Phosphorus in Soils and Plants. DOI: https://doi.org/10.5772/intechopen.112573.

Olaf, van K., and Jan, F.H.S. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25, 147–150. DOI: https://doi.org/10.1007/BF00033156.

Onipchenko, V.G., Cornelissen, J.H.C., Vakhrameeva, M.G., Zakharova, L.D., Akhmetzhanova, A.A., Khomutovskiy, M.I., van Logtestijn, R., and Soudzilovskaia, N.A. (2023). Light and 13C: are orchids different from other vascular plants in their responses to shade? Biology Bulletin Reviews 13, 55–62. DOI: https://doi.org/10.1134/S2079086423010048.

Pan, X., Welti, R., and Wang, X. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols 5, 986–992. DOI: https://doi.org/10.1038/nprot.2010.37.

Qiu, Z., Guo, W., Yu, Q., et al. (2024). Gibberellin 2-oxidase 1 (CsGA2ox1) involved in gibberellin biosynthesis regulates sprouting time in Camellia sinensis. BMC Plant Biology 24, 869. DOI: https://doi.org/10.1186/s12870-024-05589-1.

Sahu, R.K., and Chaudhary, A.K. (2021). Ethology and phenology of orchids of Jharkhand with special reference to Vanda. Biospectra 16, 43–46. DOI: https://doi.org/10.0000/mset-biospectra-43-46.

Shah, S.H., Islam, S., Mohammad, F., and Siddiqui, M.H. (2023). Gibberellic acid: a versatile regulator of plant growth, development and stress. Journal of Plant Growth Regulation 42, 7352–7373. DOI: https://doi.org/10.1007/s00344-023-11035-7.

Sharma, S., Joshi, J., Kataria, S., Verma, S.K., Chatterjee, S., Jain, M., Pathak, K., Rastogi, A., and Brestic, M. (2020). Regulation of the Calvin cycle under abiotic stresses: an overview. Plant Life Under Changing Environment 681– 717. DOI: https://doi.org/10.1016/B978-0-12-818204-8.00030-8.

Simkin, A.J., Kapoor, L., Doss, C.G.P., Hofmann, T.A., Lawson, T., and Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection, and enhancement of photosynthetic yield in planta. Photosynthesis Research 152, 23–42. DOI: https://doi.org/10.1007/s11120-021-00892-6.

Singh, A., and Roychoudhury, A. (2022). Mechanism of crosstalk between cytokinin and gibberellin. Springer Nature Switzerland AG 77–90. DOI: https://doi.org/10.1007/978-3-031-05427-3_4.

Song, X., Wang, J., Shang, F., Ding, G., and Li, L. (2023). Analysis of potential regulatory mechanisms in Sophora flower development and nutritional component formation using RNA sequencing. Horticulturae 9, 756. DOI: https://doi.org/10.3390/horticulturae9070756.

Suetsugu, K., Ohta, T., and Tayasu, I. (2018). Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. American Journal of Botany 105(9), 1595.

Susilo, H., and Chang, Y.-C. A. (2014). Nitrogen Source for Inflorescence Development in Phalaenopsis: II. Effect of Reduced Fertilizer Level on Stored Nitrogen Use. Journal of the American Society for Horticultural Science 139, 76–82. DOI: https://doi.org/10.21273/JASHS.139.1.76.

Suzuki, R.M., and Kerbauy, G. . (2006). Effects of light and ethylene on endogenous hormones and development of Catasetum fimbriatum (Orchidaceae). Brazilian Journal of Plant Physiology 18, 359–365. DOI: https://doi.org/10.1590/S1677-04202006000300002.

Svolacchia, N., and Sabatini, S. (2023). Cytokinins. Current Biology 33, R10–R13. DOI: https://www.cell.com/action/showPdf?pii=S0960- 9822%2822%2901778-X.

Tejeda-Sartorius, O., Soto-Hernández, R. M., San Miguel-Chávez, R., Trejo-Téllez, L. I., and Caamal-Velázquez, H. (2022). Endogenous hormone profiles and sugar levels show differential distribution in the leaves and pseudobulbs of Laelia anceps plants that are either induced or not induced to flower by exogenous gibberellic acid. Plants 11, 845. DOI: https://doi.org/10.3390/plants11070845.

Tsai, S., and Chang, Y. A. (2022). Plant maturity influences flowering ability and flower quality in Phalaenopsis, emphasizing their connection to the carbon-to-nitrogen ratio. HortScience 57, 191–196. DOI: https://doi.org/10.21273/HORTSCI16273-21.

Wan, X., Zou, L.-H., Pan, X., Ge, Y., Jin, L., Cao, Q., Shi, J., and Tian, D. (2024). Auxin and carbohydrates control flower bud development in Anthurium andraeanum during the early stage of sexual reproduction. BMC Plant Biology 24, 159. DOI: https://doi.org/10.1186/s12870-024-04869-0.

Wang, S.L., Viswanath, K.K., Tong, C.G., An, H.R., Jang, S., and Chen, F.C. (2019). Floral induction and flower development of orchids. Frontiers in Plant Science 10. DOI: https://doi.org/10.3389/fpls.2019.01258.

Werner, T., Motyka, V., Strnad, M., and Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences 98, 10487–10492. DOI: https://doi.org/10.1073/pnas.171304098.

Wolfe, T.M., Balao, F., Trucchi, E., Bachmann, G., Gu, W., Baar, J., Hedrén, M., Weckwerth, W., Leitch, A.R., and Paun, O. (2023). Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.). Molecular Ecology 32, 4777–4790. DOI: https://doi.org/10.1111/mec.17070.

Yan, X., Tian, M., Liu, F., Wang, C., and Zhang, Y. (2017). Hormonal and morphological changes during seed development of Cypripedium japonicum. Protoplasma 254, 2315–2322. DOI: https://doi.org/10.1007/s00709-017-1128-6.

Yin, T.T., Pin, U.L., and Ghazali, A.H.A. (2015). Influence of external nitrogen on nitrogenase enzyme activity and auxin production in Herbaspirillum seropedicae (Z78). Tropical Life Sciences Research 26, 101–110. DOI: https://pubmed.ncbi.nlm.nih.gov/26868594.

Yin, Y., Li, J., Guo, B., Li, L., Ma, G., Wu, K., Yang, F., Zhu, G., Fang, L., and Zeng, S. (2022). Ex-ogenous GA3 promotes flowering in Paphiope¬dilum callosum (Orchidaceae) through bolting and lateral flower development regulation. Horticulture Research 9, 1–16. DOI: https://doi.org/10.1093/hr/uhac091.

Yousefi, F., Jabbarzadeh, Z., Amiri, J., and Rasouli- Sadaghiani, M.H. (2019). Response of Roses (Rosa hybrida L. ‘Herbert Stevens’) and the foliar application of polyamines on root development, flowering, photosynthetic pigments, and antioxidant enzyme activity and NPK. Scientific Reports 9, 16025. DOI: https://doi.org/10.1038/s41598-019-52547-1.

Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., and Hu, H. (2018). Physiological diversity of orchids. Plant Diversity 40, 196–208. DOI: https://doi.org/10.1016/j.pld.2018.06.003.

Zhang, S.-B., Guan, Z.-J., Chang, W., Hu, H., Yin, Q., and Cao, K.-F. (2011). Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy. Physiologia Plantarum 142, 118–127. DOI: https://doi.org/10.1111/j.1399-3054.2011.01448.x.

Zhang, W., Feng, J.-Q., Kong, J.-J., Sun, L., Fan, Z.-X., Jiang, H., and Zhang, S.-B. (2021). Vegetative anatomy and photosynthetic performance of the only known winter-green Cypripedium species: implications for divergent and convergent evolution of slipper orchids. Botanical Journal of the Linnean Society 197, 527–540. DOI: https://doi.org/10.1093/botlinnean/boab033.

Zhang, W., Zhang, S.-B., and Fan, Z.-X. (2022). Quantifying the nitrogen allocation and resorption for an orchid pseudobulb in relation to nitrogen supply. Scientia Horticulturae 291, 110580. DOI: https://doi.org/10.1016/j.scienta.2021.110580.

Zhang, Y., Nie, C., Zhang, J., Guo, W., Ding, P., Lan, F., Sun, J., and Lyu, Y. (2023). A gibberellin-responsive transcription factor from Phalaenopsis ‘Big Chili’ (PIF4) promotes flowering in Arabidopsis thaliana. Plant Growth Regulation 101, 361–371. DOI: https://doi.org/10.1007/s10725-023-01023-y.

Zhou, Z., Struik, P.C., Gu, J., van der Putten, P.E.L., Wang, Z., Yin, X., and Yang, J. (2023). Enhancing leaf photosynthesis from altered chlorophyll content requires optimal partitioning of nitrogen. Crop and Environment 2, 24–36. DOI: https://doi.org/10.1016/j.crope.2023.02.001.

Zhu, P., Tian, Z., Pan, Z., and Feng, X. (2018). Identification and quantification of anthocyanins in different coloured cultivars of ornamental kale (Brassica oleracea L. var. acephala DC). The Journal of Horticultural Science and Biotechnology 93, 466–473. DOI: https://doi.org/10.1080/14620316.2017.1413425.

Zong-min, M., Ning, Y., Shu-yun, L., and Hong, H. (2012). Nitrogen requirements for vegetative growth, flowering, seed production, and ramet growth of Paphiopedilum armeniacum (Orchid). HortScience 47, 585–588. DOI: https://doi.org/10.21273/HORTSCI.47.5.585.

Zotz, G., and Winkler, U. (2013). Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171, 733–741. DOI: https://doi.org/10.1007/s00442-012-2575-6.

Downloads

Published

2025-03-14

How to Cite

Heriansyah, P., Aziz, S. A., Sukma, D., & Nurcholis, W. (2025). Dynamics of Nutrient Concentrations, Endogenous Hormones, Photosynthetic Capacity, and Phenological Changes in Black Orchid (Coelogyne pandurata Lindl.) from the Vegetative to Generative Phase. Journal of Tropical Crop Science, 12(01), 215–234. https://doi.org/10.29244/jtcs.12.01.215-234