Genetic Variability of Echinochloa crus-galli Ecotypes from West Java, Indonesia, by RAPD Analysis

Authors

  • Pesta Maria Hotnauli Pasaribu Graduate School, Agronomy and Horticulture Study Program, IPB University, Bogor, Indonesia, 16680
  • Ramadaniarto Rizqullah Graduate School, Plant Breeding and Biotechnology Study Program, IPB University, Bogor, Indonesia, 16680
  • Sintho Wahyuning Ardie Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia, 16680 https://orcid.org/0000-0003-0563-1373
  • Dwi Guntoro Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia, 16680 https://orcid.org/0000-0002-8177-108X

DOI:

https://doi.org/10.29244/jtcs.12.01.18-24

Keywords:

barnyard grass, invasive weeds, molecular markers, noxious weeds, polymorphism

Abstract

Echinochloa crus-galli (Barnyardgrass: Poaceae), is one of the most detrimental weeds in rice fields globally. As one of the leading rice producers in Indonesia, controlling barnyard grass in rice fields in West Java province is of great importance. Information on the genetic variability of barnyard grass is necessary to determine proper weed control. A molecular marker is considered the most accurate tool in determining genetic variability as its profile is unaffected by the environment. The objective of this study was to evaluate the genetic variability of barnyard grass collected from seven sub-districts in West Java province, Indonesia, using RAPD markers. Genomic DNA of barnyard grass ecotypes from “Bayusari”, “Majalaya”, “Klari”, “Cugenang”, “Cianjur”, “Ciomas”, and “Ciampea” sub-districts were analyzed using eight RAPD primers and resulted in a total of 87 reproducible amplicons. Of these amplicons, 59 were polymorphic, and 28 were monomorphic, with a polymorphism percentage ranging from 37.5-92.8%. Polymorphism information content (PIC) values ranged from 0.21 to 0.41, indicating the used RAPD markers are highly informative. All seven ecotypes were divided into three distinct groups with a coefficient level of 0.77 in a dendrogram constructed following the UPGMA clustering method. Group 1 consisted only of the “Bayusari” ecotype. Group 2 consisted of “Majalaya”, “Klari”, and “Cugenang” ecotypes, while Group 3 consisted of “Cianjur”, “Ciomas”, and “Ciampea” ecotypes. This research indicated remote dispersal of E. crus-galli, since ecotypes from distant locations were found to be closely related

References

Aboul-Ftooh Aboul-Maaty, N., and Abdel-Sadek Oraby, H. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre 43, 1–10. DOI: https://doi.org/10.1186/s42269-019-0066-1.

Amiteye, S. (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon 7, e08093. DOI: https://doi.org/10.1016/j.heliyon.2021.e08093.

Ardie, S.W., Khumaida, N., Fauziah, N., and Yudiansyah, Y. (2017). Biodiversity assessment of Foxtail Millet (Setaria italica L.) genotypes based on RAPD marker. Journal of Tropical Crop Science 4, 21–25. DOI: https://doi.org/10.29244/jtcs.4.1.21-25.

Awan, T.H., Sta Cruz, P.C., and Chauhan, B.S. (2021). Influence of Echinochloa crus-galli density and emergence time on growth, productivity, and critical period of competition with dry-seeded rice. International Journal of Pest Management 70, 167–179. DOI: https://doi.org/10.1080/09670874.2021.1969469.

Beltran, J.C., Pannell, D.J., and Doole, G.J. (2012). Economic implications of herbicide resistance and high labour costs for management of annual barnyard grass (Echinochloa crus-galli) in Philippine rice farming systems. Crop Protection 31, 31–39. DOI: https://doi.org/10.1016/j.cropro.2011.09.012.

Božić, D., Saulić, M., and Vrbničanin, S. (2019). Application of molecular methods in weed science In “Application of Molecular Methods and Raman Microscopy/Spectroscopy in Agricultural Sciences and Food Technology” pp. 15–22. Ubiquity Press.

Cusaro, M.C., Grazioli, C., Zambuto, F., Capelli, E., and Brusoni, M. (2022). An improved method for assessing simple sequence repeat (SSR) variation in Echinochloa crus-galli (L.) P. Beauv (Barnyard grass). Diversity 14, 3. DOI: https://doi.org/10.3390/d14010003.

Damalas, C.A., and Koutroubas, S.D. (2023). Herbicide-resistant barnyard grass (Echinochloa crus-galli) in global rice production. Weed Biology and Management 23, 23–33. DOI: https://doi.org/10.1111/wbm.12262.

Danquah, E.Y., Johnson, D.E., Riches, C., Arnold, G.M., and Karp, A. (2002). Genetic diversity in Echinochloa spp. collected from different geographic origins and within rice fields in Côte d’Ivoire. Weed Research 42, 394–405. DOI: https://doi.org/10.1046/j.1365-3180.2002.00300.x.

Fang, J., Liu, T., Zhang, Y., Li, J., and Dong, L. (2019). Target site-based penoxsulam resistance in barnyard grass (Echinochloa crus-galli) from China. Weed Science 67, 67281–287. DOI: https://doi.org/10.1017/wsc.2019.5.

Guo, L., Qiu, J., Ye, C., Jin, G., Mao, L., Zhang, H., Yang, X., Peng, Q., Wang, Y., Jia, L., Lin, Z., Li, G., Fu, F., Liu, C., Shen, E., Wang, W., Chu, Q., Wu, D., Wu, S., Xia, C., Zhang, Y., Zhou, X., Wang, L., Wu, L., Song, W., Wang, Y., Shu, Q., Aoka, D., Yumoto, E., Yakota, T., Miyamoto, K., Okata, K., Kim, D.-S., Cai, D., Zhang, C., Lou, Y., Qian, Q., Yamaguchi, H., Yamaguchi, H., Yamane, H., Kong, C.-H., Timko, M. P., Bar, L., and Fan, L. (2017). Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications 8, 1031. DOI: https://doi.org/10.1038/s41467-017-01067-5.

Kraehmer, H., Jabran, K., Mennan, H., and Chauhan, B. S. (2016). Global distribution of rice weeds – a review. Crop Protection 80, 73–86. DOI: https://doi.org/10.1016/j.cropro.2015.10.027.

Matzenbacher, F.O., Bortoly, E.D., Kalsing, A., and Merotto, A. (2015). Distribution and analysis of the mechanisms of resistance of barnyard grass (Echinochloa crus-galli) to imidazolinone and quinclorac herbicides. The Journal of Agricultural Science 153, 1044–1058. DOI: https://doi.org/10.1017/S0021859614000768.

Necajeva, J., Esnal, A.R., Loddo, D., Jensen, P., Taab, A., Synowiec., Uludag, A., Uremis, I., Murdoch, A., Bochenek, A., Onofri, A., and Torresen, K. (2022). Phenological development of barnyard grass plants originating from different geographical locations. Agronomy Journal 114, 3407-3419. DOI: https://doi.org/10.1002/agj2.21219.

Ofosu, R., Agyemang, E.D, Márton, A., Pásztor, G., Taller, J., and Kazinczi, G. (2023). Herbicide resistance: managing weeds in a changing world. Agronomy 13, 1–16. DOI: https://doi.org/10.3390/agronomy13061595.

Ramesh, K., Rao, A.N., and Chauhan, B.S. (2017). Role of crop competition in managing weeds in rice, wheat, and maize in India: A review. Crop Protection 95,14–21. DOI: https://doi.org/10.1016/j.cropro.2016.07.008.

Ramos, J.R., Telles, M.P., Diniz-Filho, J.A., Soares, T.N., Melo, D.B., and Oliveira, G. (2008). Optimizing reproducibility evaluation for random amplified polymorphic DNA markers. Genetic and Molecular Research 7, 1384–1391. DOI: https://doi.org/10.4238/vol7-4gmr520.

Rutledge, J., Talbert, R.E., and Sneller, C.H., (2017). RAPD analysis of genetic variation among propanil-resistant and susceptible Echinochloa crus-galli populations in Arkansas. Weed Science 48, 669-674. DOI: https://doi.org/10.1614/0043-1745(2000)048[0669:RAO GVA]2.0.CO;2.

Serrote, C.M.L., Reiniger, L.R.S., Silva, K.B., dos Santos Rabaiolli, S.M., and Stefanel, C.M. (2020). Determining the polymorphism information content of a molecular marker. Gene 726, 144175. DOI: https://doi.org/10.1016/j.gene.2019.144175.

Shekhawat, K., Rathore, S.S., and Chauhan, B.S. (2020). Weed management in dry direct-seeded rice: a review on challenges and opportunities for sustainable rice production. Agronomy 10, 1264. DOI: https://doi.org/10.3390/agronomy10091264.

Song, J.S., Lim, S.H., Yook, M.J., Kim, J.W., and Kim, D.S. (2017). Cross-resistance of Echinochloa species to acetolactate synthase inhibitor herbicides. Weed Biology and Management 17, 91-102. DOI: https://doi.org/10.1111/wbm.12123.

Sultana, R., Ahmed, T., Islam, S.M.N., and Uddin, M.N. (2022). Barnyard grass (Echinochloa crus-galli L.) as a candidate plant for phytoremediation of arsenic from arsenic-amended and industrially polluted soils. Frontiers in Soil Science 2, 1-12. DOI: https://doi.org/10.3389/fsoil.2022.927589.

Tian, Z., Shen, G., Yuan, G., Song, K., Lu, J., and Da, L. (2020). Effects of Echinochloa crusgalli and Cyperus difformis on yield and eco-economic thresholds of rice. Journal of Clean Production 259, 120807. DOI: https://doi.org/10.1016/j.jclepro.2020.120807.

Turra, G.M., Cutti, L., Angonese, P.S., Sulzbach, E., Henrique, C., Mariot, P., Markus, C., and Junior, A.M. (2023). Variability to flooding tolerance in barnyard grass and early flooding benefits on weed management and rice grain yield. Field Crops Research 300, 108999. DOI: https://doi.org/10.1016/j.fcr.2023.108999.

Vijayakumar, S., Sanjay, S., P, Saravanane., E, Subramanian., Mahender, K.R., and Meenakshi, S.R. (2023). Barnyard grass (Echinochloa crus-galli) seed production and shattering in response to its emergence time and transplanted rice geometry. Indian Journal of Weed Science 55, 162-168. DOI: https://doi.org/10.5958/0974-8164.2023.00029.1.

Ye, C.-Y., Wu, D., Mao, L., Jia, L., Qiu, J., Lao, S., Chen, M., Jiang, B., Tang, w., Peng, Q., Pan, L., Wang, L., Feng, X., Guo, L., Zhang, C., Kellogg, E.A., Olsen, K.M., Bai, L., and Fan, L. (2020). The genomes of the allohexaploid Echinochloa crus-galli and its progenitors provide insights into polyploidization-driven adaptation. Molecular Plant 13, 1298-1310. DOI: https://doi.org/10.1016/j.molp.2020.07.001.

Zhang, Z., Cao, J., Gu, T., Yang, X., Peng, Q., Bai, L., and Li, Y. (2021). Co-planted barnyard grass reduces rice yield by inhibiting plant above-and below-ground growth during post-heading stages. The Crop Journal 9, 1198–1207. DOI: https://doi.org/10.1016/j.cj.2020.10.011.

Downloads

Published

2025-02-28

How to Cite

Pasaribu, P. M. H., Rizqullah, R., Ardie, S. W., & Guntoro, D. (2025). Genetic Variability of Echinochloa crus-galli Ecotypes from West Java, Indonesia, by RAPD Analysis. Journal of Tropical Crop Science, 12(01), 18–24. https://doi.org/10.29244/jtcs.12.01.18-24