Effect of Nitrogen on Intercropped Radish (Raphanus sativus L.) and Spinach (Spinacia oleracea L.) Productivity under Greenhouse Conditions

Authors

  • Hafith Furqoni Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA https://orcid.org/0009-0008-7136-4879
  • Jasmine Mausbach Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA https://orcid.org/0000-0003-3012-0129
  • Nathan Fortner Doctor of Plant Health Student, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA
  • Xinzheng (Chris) Chen Doctor of Plant Health Student, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA https://orcid.org/0000-0002-0686-3590
  • Anthony Akpofure Amori Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA https://orcid.org/0000-0002-8038-4117
  • Zachary Rystrom Doctor of Plant Health Student, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, NE, USA

DOI:

https://doi.org/10.29244/jtcs.12.01.116-123

Keywords:

chlorophyll content, crop productivity, dry biomass, intercrop, leaf number

Abstract

Due to a rapidly increasing global population and limited arable land, there is a need to increase crop productivity per unit area and optimize resource utilization by plants. One strategy to achieve improved resource utilization is intercropping, whereby two or more crops are grown in mixed or alternating patterns within a block of land. This study aimed to evaluate the effect of nitrogen on radish (Raphanus sativus L.) and spinach (Spinacia oleracea L.) intercropping on crop growth parameters and yield. Intercropped radish and spinach grown in the greenhouse resulted in only one radish-spinach intercrop ratio (50:50) with the same or greater productivity as radish and spinach monocultures, and it did not include an addition of nitrogen. The LER value associated with this treatment was 1.06. However, adding fertilizer resulted in significantly different (P<0.05) leaf numbers, chlorophyll content, and dry biomass of intercropped radish and spinach compared to treatments without fertilizer, except for leaf number in radish. Radish and spinach’s replacement series response curves are concave and convex, respectively, in fertilizer and non-fertilizer treatments. The response curves imply that radish is more aggressive than spinach in intercropping systems. In the only intercrop treatment with an LER>1.0 (50:50 without fertilizer), radish was 2.9 times more competitive than spinach.

References

Ansari, M., Chaichi, M.R., Bhandari, S., and Raheja, A. (2020). Physiological and economic aspects of lettuce production under deficit water and nitrogen conditions. Advances in Agriculture, Horticulture and Entomology 5, AAHE-135. DOI: https://doi.org/10.37722/aahae.20206.

Araujo, T. (2023). Do organic fertilization and Azospirillum brasilense influence radish cultivation? Revista De Ciências Agroveterinárias, 22, 439-444. DOI: https://doi.org/10.5965/223811712232023439.

Azia, F., and Stewart, K. (2001). Relationship between extractable chlorophyll and SPAD values in muskmelon leaves. Journal of Plant Nutrition 24, 961–966. DOI: https://doi.org/10.1081/pln-100103784.

Boetzl, F.A., Douhan Sundahl, A., Friberg, H., Viketoft, M., Bergkvist, G., and Lundin, O. (2023). Under sowing oats with clovers supports pollinators and suppresses arable weeds without reducing yields. Journal of Applied Ecology 60, 614-623. DOI: https://doi.org/10.1111/1365-2664.14361.

Brintha, I., and Seran, T. (2010). Effect of paired row planting of radish (Raphanus sativus L.) intercropped with vegetable amaranthus (Amaranthus tricolor L.) on yield components of radish in sandy regosol. Journal of Agricultural Sciences-Sri Lanka 4, 19. DOI: https://doi.org/10.4038/jas.v4i1.1642.

Connolly, J. (1986). On difficulties with replacement-series methodology in mixture experiments. Journal of Applied Ecology 23, 125-137.

Cousens, R., and O’Neill, M. (1993). Density dependence of replacement series experiments. Oikos 66, 347-352. DOI: https://doi.org/10.2307/3544824.

de Sousa Pinheiro, M., Pereira, J.S., Coutinho, C.R., Filgueiras, R.M.C., de Almeida Guimarães, M., and Mesquita, R.O. (2019). Intercropping of collard green and radish “Cometo”: Spatial arrangement and growing efficiency. Revista Ceres 66, 243–248. DOI: https://doi.org/10.1590/0034-737x201966040001.

Deb, D., Dutta, S., and Erickson, R. (2022). The robustness of land equivalent ratio as a measure of yield advantage of multi-crop systems over monocultures. Experimental Results 3, e2. DOI: https://doi.org/10.1017/exp.2021.33.

Di Mola, I., Cozzolino, E., Ottaiano, L., Nocerino, S., Rouphael, Y., Colla, G., El-Nakhel, C., and Mori, M. (2020). Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based bio stimulant application. Agronomy 10, 278. DOI: https://doi.org/10.3390/agronomy10020278.

FAO. (1985). “Guidelines: land evaluation for irrigated agriculture”. Glossary

Gazoulis, I., Kanatas, P., and Antonopoulos, N. (2021). Cultural practices and mechanical weed control for the management of a low-diversity weed community in spinach. Diversity 13, 616. DOI: https://doi.org/10.3390/d13120616.

Głowacka, A., and Flis-Olszewska, E. (2022). The biodiversity of weed communities of dent maize, narrow-leaved lupin, and oat in relation to cropping system and weed control. Agronomy Science 77, 123-137. DOI: https://doi.org/10.24326/as.2022.3.9.

Gülüt, K.Y., and Şentürk, G.G. (2024). Impact of nitrogen fertilizer type and application rate on growth, nitrate accumulation, and postharvest quality of spinach. PeerJ 12, e17726. DOI: https://doi.org/10.7717/peerj.1772.

Islam, M.R., Mian, M.A.K., Mahfuza, S.N., Hossain, J., and Hannan, A. (2015). Efficiency of intercropping vegetables and spices relayed with pointed gourd. Bangladesh Agronomy Journal 18, 7-12. DOI: https://doi.org/10.3329/baj.v18i1.25562.

Jilani, M.S., Burki, T., and Waseem, K. (2010). Effect of nitrogen on growth and yield of radish. Journal of Agricultural Research 48, 219-225.

Koike, S.T., Cahn, M., Cantwell, M., Fennimore, S., Lestrange, M., Natwick, E., Smith, R.F., and Takele, E. (2011). Spinach production in California. University of California Division of Agriculture and Natural Resources 7212. DOI: https://doi.org/10.3733/ucanr.7212.

Lekgoathi, B.P., Soundy, P., and Kgopa, P.M. (2022). Deficit Irrigation on Growth of Baby Spinach (Spinacia oleracea L.) Cultivars Grown in Varied-textured Soils. HortScience 57, 518-522. DOI: https://doi.org/10.21273/hortsci16328-21.

León, A.P., Viña, S.Z., Frezza, D., Chaves, A., and Chiesa, A. (2007). Estimation of chlorophyll contents by correlations between SPAD- 502 meter and chroma meter in butterhead lettuce. Communications in Soil Science and Plant Analysis 38, 2877-2885. DOI: https://doi.org/10.1080/00103620701663115.

Li, C., Stomph, T.J., Makowski, D., Li, H., Zhang, C., Zhang, F., and van der Werf, W. (2023). The productive performance of intercropping. Proceedings of the National Academy of Sciences 120, e2201886120. DOI: https://doi.org/10.1073/pnas.2201886120.

Lin, L., Liu, Q., Shi, J., Sun, J., Liao, M., and Mei, L. (2014). Intercropping different varieties of radish can increase cadmium accumulation in radish. Environmental Toxicology and Chemistry 33, 1950–1955. DOI: https://doi.org/10.1002/etc.2626.

Ling, S., Rizvi, S.A.H., Xiong, T., Liu, J., Gu, Y., Wang, S., and Zeng, X. (2022). Volatile signals from guava plants prime defense signaling and increase jasmonate-dependent herbivore resistance in neighboring citrus plants. Frontiers in Plant Science 13, 833562. DOI: https://doi.org/10.3389/fpls.2022.833562.

Liu, C., Yan, P., Liu, Z., Zhang, J., Zhang, G., Cui, L. (2023). Strip intercropping with local crops increased Aconitum carmichaeli yield and soil quality. Frontiers in Plant Science 14, 1147671. DOI: https://doi.org/10.3389/fpls.2023.1147671.

Ma, Y., Chai, Y., Guan, S., Tuerti, T., Liu, H., Zhang, Z., and Diao, M. (2022). Effects of different levels of nitrogen supply on key enzyme activities of Nitrogen metabolism and growth stimulation of endive (Cichorium endivia L.). Sustainability 14, 15159. DOI: https://doi.org/10.3390/su142215159.

Martin-Guay, M.O., Paquette, A., Dupras, J., and Rivest, D. (2018). The new green revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment 615, 767-772. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.024.

Mirjalili, S., and Poorazizi, E. (2019). Assessment effect of macronutrients on growth and phytochemical contents of Iranian native spinach. Trends in Horticulture 2, 57-62. DOI: https://doi.org/10.24294/th.v2i1.727.

Monim. M.A., Islam, A.B.M.S., Rahman, A.K.M.A., Monim, A.S.M.A., and Quddus, M.A. (2010). Effect of intercropping on different vegetables with groundnut. Journal of Agroforestry and Environment 4, 27-30.

Ngairangbam, H. (2024). Effect of different spacing and nutrient management on growth and yield of maize: a review. Journal of Advances in Biology and Biotechnology 27, 682-692. DOI: https://doi.org/10.9734/jabb/2024/v27i6928.

Pothour, G. (2017). “Garden Notes 154: Soil Temperature Conditions for Vegetable Seed Germination”. pp 1-2. University of California Agriculture and Natural Resources.

Singh, R.J., Pande, K.K., Sachan, V.K., Singh, N.K., Sahu, R.P., and Singh, M.P. (2016). Productivity, profitability, and energy consumption of potato-based intercropping systems. International Journal of Vegetable Science 22, 190-199. DOI: https://doi.org/10.1080/19315260.2014.103632

Swanton, C.J., Nkoa, R., and Blackshaw, R.E. (2015). Experimental methods for crop-weed competition studies. Weed Science 36, 2-11. DOI: https://doi.org/10.1614/ws-d-13-00062.1.

Tamburini, G., Bommarco, R., Wanger, T.C., Kremen, C., Van Der Heijden, M.G., Liebman, M., and Hallin, S. (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances 6, eaba1715. DOI: https://doi.org/10.1126/sciadv. aba1715.

Waladi, B. (2023). Effect of nitrogen and boron on growth parameters, yield attributes and yield of mustard crop in chitrakoot area. International Journal of Plant and Soil Science 35, 1292-1299. DOI: https://doi.org/10.9734/ijpss/2023/v35i203929.

Wells, O.S., and Loy, J.B. (1993). Rowcovers and high tunnels enhance crop production in the northeastern United States. HortTechnology 3, 92-95. DOI: https://doi.org/10.21273/horttech.3.1.92.

Willey, R., and Rao, M. (1980). A Competitive Ratio for Quantifying Competition Between Intercrops. Experimental Agriculture 16, 117-125. DOI: https://doi.org/10.1017/s0014479700010802.

Yang, H., Xu, H.S., Zhang, W.P., Li, Z.X., Fan, H.X., Lambers, H., and Li, L. (2022). Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Functional Ecology 36, 2163-2175. DOI: https://doi.org/10.1111/1365-2435.14115.

Yousaf, M., Bashir, S., Raza, H., Shah, A.N., Iqbal, J., Arif, M., Bukhari, M.A., Muhammad, S., Hashim, S., Alkahtani, J., Alwahibi, M.S. (2021). Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi Journal of Biological Sciences 28, 3021-3030. DOI: https://doi.org/10.1016/j.sjbs.2021.02.043.

Yousif, R. (2023). Influence of intercropping system between coriander and garlic as well as potassium fertilization source on growth and productivity of garlic plant. Zagazig Journal of Agricultural Research 50, 451-562. DOI: https://doi.org/10.21608/zjar.2023.322966.

Downloads

Published

2025-02-28

How to Cite

Furqoni, H., Mausbach, J., Fortner, N., Chen, X. (Chris), Amori, A. A., & Rystrom, Z. (2025). Effect of Nitrogen on Intercropped Radish (Raphanus sativus L.) and Spinach (Spinacia oleracea L.) Productivity under Greenhouse Conditions. Journal of Tropical Crop Science, 12(01), 116–123. https://doi.org/10.29244/jtcs.12.01.116-123