Growth Response, Physiology, Metabolomic, and Production of Micro-Tom Tomatoes to Additional Lighting with White and Purple Light-Emitting Diode

Authors

DOI:

https://doi.org/10.29244/jtcs.12.02.284-295

Keywords:

artificial light, fatty acids, fruit quality, plant cycle, secondary metabolites

Abstract

Tomatoes are a widely produced and consumed fruit-vegetable belonging to the Solanaceae family. It contains minerals, vitamins, essential amino acids, sugars, and fiber. Micro-Tom is a wild-type cultivar from a cross between the Florida Basket and Ohio 4013-3 cultivars. Micro-Tom has two mutant types, the iaa9-3 and iaa9-5 mutants, which exhibit strong parthenocarpic properties. It is classified as a mutant tomato due to a mutation in the IAA9 gene, which belongs to the Auxin/IAA (Indole-3-Acetic-Acid) gene family and plays a role in suppressing the endogenous auxin signal transcription pathway. Using artificial light in cultivation techniques shortens the plant cycle and accelerates the juvenile phase. This study aimed to investigate the morphological, physiological, and production responses of Micro-Tom tomatoes to supplemental LED lighting. The research was conducted at the Leuwikopo experimental field of IPB University from March to November 2023. A completely randomized design was employed, with two factors (LED spectrum and Micro-Tom genotyping) and nine replicates. The study also examined the potential benefits of combining polychromatic and monochromatic light-emitting diodes (LEDs). The response of Micro-Tom tomatoes to artificial lighting with purple and white LEDs did not show significant differences in growth and production parameters. However, significant differences were observed between the tomato types, specifically between the Wild-type and the iaa9-3 mutant. No significant differences were found in LED treatment or Micro-Tom genotype for physiological parameters such as chlorophyll content and glucose-fructose levels. Regarding fruit quality, no significant differences were observed for parameters such as total soluble solids (TSS, Brix) to total titratable acidity (TTA, acidity), glucose and fructose, and malic acid. The LC-MS/MS analysis of leaves exposed to purple LED light revealed a profile dominated by secondary metabolites from the fatty acid compound group, suggesting the potential benefits of this lighting combination. In conclusion, using LED lights can accelerate the plant life cycle and shorten the juvenile phase, as evidenced by the first flower emergence, which occurred 20 days after transplanting (DAT) in the wild-type genotype and 16 DAT in the mutant genotype.

References

Ajdanian, L., Babaei, M., and Aroiee, H. (2020). Investigation of photosynthetic effects, carbohydrate, and starch content in cress (Lepidium sativum) under the influence of blue and spectrum. Heliyon 6, 05628. DOI: 10.1016/j.heliyon.2020.e05628.

Adrian, M. (2022). “Physiological and Multiomics Study of Strawberry Plant on Artificial Light and Jasmonate-Salicylate Differences”. Faculty of Agriculture, IPB University.

Ahmad, N., Rab, A., and Ahmad, N. (2015). Light-induced biochemical variations in secondary metabolites production and antioxidant activity in callus cultures of Stevia rebaudiana. Journal of Photochemistry and Photobiology 154, 51-56. DOI: 10.1016/j.photobiol.2015.11.015.

Anas, Wiguna, G., Damayanti, F., Mubarok, S., Setyorini, D., and Ezura, H. (2022). Effect of ethylene Sletr1-2 receptor allele on flowering, fruit phenotype, yield, and shelf-life of four F1 generations of tropical tomatoes (Solanum lycopersicum L.). Horticulturae 8, 1-10. DOI: https://doi.org/10.3390/horticulturae8121098.

Bowman, K.D., and Albrecht, U. (2021). Improving winter growth in the citrus nursery with LED and HPS supplemental lighting. Hort Science 56, 21-27. DOI: 10.21273/HORTSCI15302-20.

Choi, H.G., Moon, B.Y., and Kang, N. (2015). Effects of LED light on the production of strawberries during cultivation in a plastic greenhouse and in a growth chamber. Scientiae Horticulturae 189, 22-31. DOI: 10.1016/j.scienta.2015.03.022.

Cioc, M., Dziurka, M., and Pawlowska, B. (2022). Changes in endogenous phytohormones of Gerbera jamesonii axillary shoots multiplied under different light emitting diodes light quality. Molecules 27, 1-20. DOI: https://doi.org/10.3390/molecules27061804.

Domínguez, R., Gullón, P., Pateiro, M., Munekata, P.E.S., Zhang, W., and Lorenzo, J.M. (2020). Tomato is a potential source of natural additives for the meat industry. Antioxidants 9, 1-22. DOI: 10.3390/antiox9010073.

Eisenreich, W., Bacher, A., Arigoni, D., and Rohdich, F. (2004). Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences 61, 1401-1426. DOI:10.1007/s00018-004-3381-z.

Ghosh, S., Watson, A., Oscar, E., Ricardo, H., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., and Green, P. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocol 1, 2944-2963. DOI: 10.1038/s41596-018-0072-z.

Hendriyani, I.S., Nurchayati, Y., and Setiari, N. (2018). Contents of chlorophyll and carotenoid of beans (Vigna unguiculata (L.) Walp.) in the different ages of plants. Jurnal Biologi Tropika 1, 38-43. DOI: https://doi.org/10.14710/jbt.1.2.38-43.

Hossain, A., Begum, P., Zannat, M.S., Rahman, M.H., Ahsan, M., and Islam, S.N. (2016). Nutrient composition of strawberry genotypes cultivated in a horticulture farm. Food Chemistry 199, 648-652. DOI:10.1016/j.foodchem.2015.12.056.

Huang, W., Yang, G., Liu, D., Li, Q., Zheng, L., and Ma, J. (2022). Metabolomics and transcriptomics analysis of vitro growth in pitaya plantlets with different LED light spectra treatment. Industrial Crops and Products 186, 115237. DOI: 10.1016/j.indcrop.2022.115237.

Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research 53, 39-64. DOI: 10.1186/s40659-019-0246-3.

Jeon, J.E., Kim, J.G., Fischer, C.R., Mehta, N., Dufour-Schroif, C., Wemmer, K., Mudgett, M.B., and Sattely, E. (2020). A pathogen-responsive gene cluster for highly modified fatty acids in tomato. Cell 180, 176-187. DOI: 10.1016/j.cell.2019.11.037.

Kosar, F., Akram, N.A., Sadiq, M., Al-Qurainy, F., and Ashraf, M. (2019). Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation 38, 606-618. DOI: 10.1007/s00344-018-9876-x.

Lanoue, J., Zheng, J., Little, C., Thibodeau, A., Grodzinski, B., and Hao, X. (2019). Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting. Frontier Plant Science 10, 1114. DOI:10.3389/fpls.2019.01114.

Lestari, F.W., Suminar, E., Nuraini, A., Ezura, H., Mubarok S. (2020). Changes of pollen viability and stomatal anatomy in two tomato mutant of iaa9-3 and iaa9-5, as a result of heat stress. Jurnal Agrikultura 31, 25-31. DOI: https://doi.org/10.24198/agrikultura.v31i1.25768.

Matysiak, B., Kaniszewski, S., Dyśko, J., Kowalczyk, W., Kowalski, A., and Grzegorzewska, M. (2021). The impact of LED light spectrum on the growth, morphological traits, and nutritional status of ‘Elizium’ romaine lettuce grown in an indoor controlled environment. Agriculture 11, 1-15. DOI:10.3390/agriculture11111133.

Monjil, M.S., Takemoto, D., and Kawakita, K. (2014). Defense induced by a bis-aryl methanone compound leads to resistance in potatoes against Phytophthora infestans. Journal of Gene Plant Pathology 80, 38-49. DOI:10.1007/s10327-013-0493-z.

Nacheva, L., Dimitrova, N., Koleva-Valkova, L., Tarakanov, I., and Vassilev, A. (2021). Effect of LED lighting on the growth of raspberry (Rubus idaeus L.) plants in vitro. Agricultural Science 13, 126-140. doi:10.22620/agrisci.2021.29.015.

Nadalini, S., Zucchi, P., and Andreotti, C. (2017). Effects of blue and red LED light on soilless cultivated strawberry growth performances and fruit quality. Horticulture Science 82, 12-20. DOI:10.17660/eJHS.2017/82.1.2.

Naznin, M.T., Lefsrud, M., Gravel, V., and Azad, M.O.K. (2019). Blue light added with red LEDs enhances growth characteristics, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 8, 93. DOI: 10.3390/plants8040093.

Nievola, C.C., Carvalho, P.C., Carvalho, V., and Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature 4, 371-405. DOI: 10.1080/23328940.2017.1377812.

Patel, M.K., Pandey, S., Kumar, M., Haque, M.I., Pal, S., and Yadav, N.S. (2021). Plants metabolome study: emerging tools and techniques. Plants 10, 2409. DOI: 10.3390/plants10112409.

Perez-Gil, J., Behrendorff, J., Douw, A., and Vickers, C.E. (2024). The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nature Communication 15, 5303. DOI:10.1038/s41467-024-49483-8.

Pundir, R.K., Pathak, A., Joshi, N., Bagri, D.S., and Prakash, C. (2020). Irradiation studies of LED light spectra on the growth and development of potato (Solanum tuberosum L.). Plant Science Today 7, 406-416. DOI: 10.14719/pst.2020.7.3.797.

Rehman, M., Fahad, S., Saleem, M.H., Hafeez, M., Ur Rahman, M.H., Liu, F., and Deng, G. (2020). Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica 58, 922-931. DOI: 10.32615/ps.2020.040.

Saputri, L.D., Isminingsih, S., Fatmawaty, A.A., and Rachmawati, F. (2019). Morfogenesis anggrek (Anoectochilus formosanus) secara in vitro. Jurnal Agroekotek 11, 57-71. DOI: http://dx.doi.org/10.33512/jur.agroekotek.v11i1.7620.

Seydel, C., Kitashova, A., Furtauer, L., and Nagele, T. (2021). Temperature-induced dynamics of plant carbohydrate metabolism. Physiologia Plantarum 174, 13602. DOI: https://doi.org/10.1111/ppl.13602.

Song, Y.X., Liu, S.P., Jin, Z., Qin, J.F., and Jiang, Z.Y. (2013). Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time of flight mass spectrometry. Molecules 18, 12192-12207. DOI:10.3390/molecules181012192.

Tala, V.R.S., da Silva, V.C., Rodrigues, C.M., Nkengfack, A.E., dos Santos, L.C., and Vilegas, W. (2013). Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don (Fabaceae) by flow injection analysis-Electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 18, 2803-2820. DOI:10.3390/molecules18032803.

Thakur, M., Bhattacharya, S., Khosla, P.M., and Puri, S. (2019). Improving production of plant secondary metabolites through biotic abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12, 1-12. DOI: 10.1016/j.jarmap.2018.11.004.

Tousif, M.I., Nazir,M., Saleem, M., Tauseef, S., Shafiq, N., Hassan, L., Hussian, H., Montesano, D., Naviglio, D., Zengin, G., and Ahmad, I. (2022). Psidium guajava L., a valuable but underexplored food crop: its phytochemistry, ethnopharmacology, and industrial applications. Molecules 27, 7016. DOI: https://doi.org/10.3390/molecules27207016.

Uehara, M., Wang, S., Kamiya, T., Shigenobu, S., Yamaguchi, K., Fujiwara, T., Naito, S., and Takano, J. (2014). Identification and characterization of an Arabidopsis mutant with localization of NIP5;1, a plasma membrane boric acid channel, reveals the requirements for D-Galactose in endomembrane organization. Plant Cell Physiology 55, 704-714. DOI: https://doi.org/10.1093/pcp/pct191.

Upreti, K.K., Prasad, S.R.S., Reddy, Y.T.N., and Rajeshwara, A.N. (2014). Paclobutrazol induced changes in carbohydrates and some associated enzymes during floral initiation in mango (Mangifera indica L.) cv. Totapuri. Indian Journal of Plant Physiology 19, 317-323. DOI: 10.1007/s40502-014-0113-8.

Wahyudi, A., Sari, F.K., and Nazirwan. (2021). Keragaan karakter morfologi tanaman tomat (Solanum lycopersicum) kultivar micro-tom kuning dan rainbow In “Prosiding 6th Postgraduate Bio Expo 2021” (Webinar Nasional VII Biologi Dan Pembelajarannya), pp 153-166, Medan, Indonesia. Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) UNIMED.

Wang, S., Fang, H., Xie, J., Wu, Y., Tang, Z., Liu, Z., Lv, J., and Yu, J. (2021). Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED. Frontiers in Plant Science 12, 709313. DOI: 10.3389/fpls.2021.709313.

Wargent, J.J. (2016). UV LEDs in horticulture: from biology to application. Acta Horticulturae 1134, 25-32. DOI: 10.17660/ActaHortic.2016.1134.4.

Warren. (2008). Rapid measurement of chlorophylls with a microplate reader. Journal of Plant Nutrition 31, 1321-1332. DOI: 10.1080/01904160802135092.

Xiaoying, L., Mingjuan, Y., Xiaodong, X., Abm, K., Atak, A., Caihong, Z., and Dawei, L. (2022). Effect of light on growth and chlorophyll development in kiwifruit ex vitro and in vitro. Scientiae Horticulturae 291, 1-8. DOI:10.1016/j.scienta.2021.110599.

Yamazaki, O.M., Watanabe, M., Nakanishi, A., Che, J., Horiuchi, N., and Ogiwara, I. (2018). Shortening of the juvenile phase of the Southern Highbush Blueberry (Vaccinium corymbosum L. interspecific hybrid) grown in control LED rooms under artificial light. Horticulture 87, 329-339. DOI: 10.2503/hortj. OKD-136.

Zou, T., Huang, C., Wu ,P., Ge, L., and Xu, Y. (2020). Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants 9, 1-14. DOI:10.3390/plants9040490.

Zulviana, S., Kirom, M.R., and Rosdiana, E. (2020). Analysis of the effect of light emitting diode intensity with red, blue, and white colors on the growth of mustard green (Brassica rapa var parachinensis) in the room. e-Proceeding of Engineering 7, 1147-1154.

Downloads

Published

2025-06-26

How to Cite

Lubis, W. M. Y., Hapsari, D. P., Poerwanto, R., & Matra, D. D. (2025). Growth Response, Physiology, Metabolomic, and Production of Micro-Tom Tomatoes to Additional Lighting with White and Purple Light-Emitting Diode. Journal of Tropical Crop Science, 12(02), 284–295. https://doi.org/10.29244/jtcs.12.02.284-295