Early Identification of Potentially Drought-Tolerant Doubled Haploid Rice Lines During the Seedling Stage
DOI:
https://doi.org/10.29244/jtcs.12.02.346-357Keywords:
abiotic stress, El Niño, genetic improvement, vegetativeAbstract
Climate change and reduced crop yields caused by drought stress have increased the demand for drought-tolerant varieties. The anther culture technique allows the production of improved varieties with high homozygosity in a short time. The study aimed to select the drought-tolerant double haploid lines at the seedling stage. This research was conducted in the greenhouse of the Indonesian Center for Agricultural Biotechnology and Genetic Resources Instrument Standard Testing (BBPSI Biogen), Bogor, from August to November 2023. The drought-tolerant selection of 12 doubled-haploid rice lines (AE1-AE12) and four check varieties, i.e., two commercial checks (“Inpari 18” Tadah Hujan Agritan or AE13, “Bioni63” Ciherang Agritan or AE14), one drought-tolerant check (“Salumpikit” or AE15), and one drought-sensitive check (“IR20” or AE16). The research used a randomized complete block design with three replications. The characters observed were leaf rolling, leaf drying, recovery ability, and plant fresh and dry weight. The Friedman test results showed that the lines with the lowest rankings, three lines (AE2, AE5, and AE12) with mild tolerant criteria for leaf rolling, five lines (AE1, AE2, AE5, AE8, and AE12) with mild tolerant criteria for leaf drying, and three lines (AE1, AE5, and AE12) with tolerant criteria for recovery ability. The selection index for drought tolerance at the seedling stage identified seven lines with positive values. Based on the Friedman test, selection index, and heatmap visualization, AE12, AE1, AE5, and AE8 exhibited a tolerance similar to “Salumpikit” and were deemed suitable based on drought tolerance characters.
References
Ali, Z., Merrium, S., Habib-ur-Rahman, M., Hakeem, S., Saddique, M.A.B., and Sher, M.A. (2022). Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop—a review. Environmental Science and Pollution Research 29, 30967–30985. DOI: https://doi.org/10.1007/s11356-022-18846-3
Ambikabathy, A., Banumathy, S., Gnanamalar, R.P., Arunchalam, P., Jeyaprakash, P., Amutha, R., and Venkatraman, N.S. (2019). Evaluation of rice genotypes for seedling and reproductive stage drought tolerance. Electronic Journal of Plant Breeding 10, 1122–1132. DOI: https://doi.org/10.5958/0975-928X.2019.00143.1
Baniya, S., Thapa. L.B., and Pokhrei, C.P. (2020). Effect of water-deficit stress on the selected landraces and improved varieties of rice (Oryza sativa l.) in Nepal. Agrivita Journal of Agricultural Science 42, 381-392. DOI: https://doi.org/10.17503/agrivita.v42i2.2554.
Bewick, V., Cheeck, L., and Ball, J. (2003). Statistics review 7: Correlation and regression. Critical Care 7, 451-459. DOI: https://doi.org/10.1186/cc2401.
Bhandari, U., Gajurel, A., Khadka, B., Thapa, I., Chand, I., Bhatta, D., Pundel, A., Pandey, M., Sherstha, S., and Sherstha, J. (2023). Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon 9, e13744. DOI: https://doi.org/10.1016/j.heliyon.2023.e13744.
[BMKG] Indonesian Agency for Meteorological, Climatological and Geophysics. (2024). “Pemantauan Musiman Juli-September (Q3) 2023”. https://cdn.bmkg.go.id/Web/Q3_2023.pdf. [August 26, 2024].
Botahala, L., Djasibani, H.R., Oualeng, A., Makanmoy, Y.R., and Botahala, D.E. (2021). Mencegah laju kekeringan sungai akibat pemanasan global. Jurnal Pemberdayaan Masyarakat Berkarakter 4.
[BPS] Central Bureau of Indonesian Statistics. (2022). “Rice Harvest Area, Production and Productivity by Province 2020-2022”. https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html [May 15, 2024].
[BPS] Central Bureau of Indonesian Statistics. (2023). “Harvest Area and Rice Production in Indonesia 2023 (Provisional Figures)”. https://www.bps.go.id/id/pressrelease/2023/10/16/2037/luas-panen-dan-produksi-padi-di-indonesia-2023--angka-sementara-html [May 15, 2024].
[BPS] Central Bureau of Indonesian Statistics. (2024). “Jumlah Curah Hujan dan Jumlah Hari Hujan (mm), 2022-2023”. https://bogorkota.bps.go.id/id/statistics-table/2/MTUzIzI=/jumlah-curah-hujan.html [March 18, 2025].
Cal, A.J., Sanciangco, M., Rebolledo, M.C., Luquet, D., Torres, R.O., McNally, K.L., and Henry, A. (2019). Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell, and Environment 42, 1532-1544. DOI: https://doi.org/10.1111/pce.13514.
Chen, D., Wang, S., Cao, B., Leng, G., Li, H., Yin, L., Shan, L., and Deng., X. (2016). Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Frontiers in Plant Science 6, 1241. DOI: https://doi.org/10.3389/fpls.2015.01241.
Conover, W.J. (1999). “Practical Nonparametric Statistics”. 3rd Edition. John Wiley and Sons.
Cui, Y., Li, R., Li, G., Zhang, F., Zhu, T., Zhang, Q., Ali, J., Li, Z., and Xu., S. (2020). Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal 18, 57-67. DOI: https://doi.org/10.1111/pbi.13170.
Dewi, I.S., and Purwoko, B.S. (2012). Kultur antera untuk percepatan perakitan varietas padi di Indonesia. Jurnal AgroBiogen 8, 78-88.
Djarwanto, S., P. (2005). “Statistik Induktif”. 5th ed. BPFE.
Falconer, D.S., and Mackay T.F.C. (1996). “Introduction to Quantitative Genetics”. 4th ed. Longman Essex.
Fukagawa, N.K., and Ziska, L.H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology 65, S2-S3. DOI: https://doi.org/10.3177/jnsv.65.s2.
Gomez, K.A., and Gomez, A.A. (1995). “Prosedur Statistik untuk Penelitian Pertanian”. UI Press.
Hadianto, W., Purwoko, B.S., Dewi, I.S., Suwarno, W.B., and Hidayat, P. (2023). Selection index and agronomic characters of doubled haploid rice lines from anther culture. Biodiversitas 24, 1511-1517. DOI: https://doi.org/10.13057/biodiv/d240321.
Hasanuzzaman, M., Shabala, L., Brodribb, T.J., Zhou, M., and Shabala, S. (2022). Understanding the role of physiological and agronomical traits during drought recovery as a determinant of differential drought stress tolerance in barley. Agronomy 12, 2136. DOI: https://doi.org/10.3390/agronomy12092136.
Hassan, M.A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L., Shimei, W. 2023. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science 14, 1215371. DOI: https://doi.org/10.3389/fpls.2023.1215371.
Herawati, R., Alnopri, Masdar, Simarmata, M., Sipriyadi, and Sutrawati, M. (2021). Identification of drought tolerant markers, DREB2Aand BADH2genes, and yield potential from single-crossing varieties of rice in Bengkulu, Indonesia. Biodiversitas 22, 785-793. DOI: https://doi.org/10.13057/biodiv/d220232.
[IRRI] International Rice Research Institute. (2014). “Standard Evaluation System (SES) for Rice”. http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf [July 7, 2024].
Kartika, K., Sakagami, Jun-Ichi, Lakitan, B., Yabuta, S., Wijaya, A., Kadir, S., Widuri, L.I., Siaga, E., and Nakao, Y. (2020). Morpho-physiological response of Oryza glaberrima to gradual soil drying. Rice Science 27, 67-74. DOI: https://doi.org/10.1016/j.rsci.2019.12.007.
Kartina, N., Purwoko, B.S., Dewi, I.S., Wirnas, D., and Nindita, A. (2019). Skrining awal toleransi galur-galur dihaploid padi gogo terhadap cekaman kekeringan pada stadia bibit. Indonesian Journal of Agronomy 47, 1-8. DOI: https://doi.org/10.24831/jai.v47i1.22766.
[Kementan] Indonesian Ministry of Agriculture and the Indonesian Agency. (2021). “Rencana Strategis Kementerian Pertanian Tahun 2020-2024”. https://ppid.pertanian.go.id/doc/1/Draft%20Renstra%202020-2024%20edited%20BAPPENAS%20(Final).pdf [July 31, 2023].
Kiernan, D. (2014). “Natural Resources Biometrics”. Open SUNY Textbooks.
Krieger-Liszkay, A., Krupinska, K., and Shimakawa, G. (2019). The impact of photosynthesis on initiation of leaf senescence. Physiologia Plantarum 166, 148-164. DOI: https://doi.org/10.1111/ppl.12921.
Kumar, K.P., Binodh, A.K., Saravanan, S., Senthil, A., and Kumar, N.S. (2019). Rapid screening for drought tolerance in traditional landraces of rice (Oryza sativa L.) at seedling stage under hydroponics. Electronic Journal of Plant Breeding 10, 636-644. DOI: http://dx.doi.org/10.5958/0975-928X.2019.00080.2.
Liu, J., and Xu, Y. (2022). T‑Friedman test: a new statistical test for multiple comparison with an adjustable conservativeness measure. International Journal of Computational Intelligence Systems 15, 1-19. DOI: https://doi.org/10.1007/s44196-022-00083-8.
Malau, L.R.E., Rambe, K.R., Ulya, N.A., and Purba, A.G. (2023). Dampak perubahan iklim terhadap produksi tanaman pangan di Indonesia. Jurnal Penelitian Pertanian Terapan 23, 34-46. DOI: https://doi.org/10.25181/jppt.v23i1.2418.
Mustikarini, E.D., Lestari, T., Santi, R., Prayoga, G.I., Cahya, Z. (2022). Short communication: Evaluation of F6 generation of upland rice promising lines for drought stress tolerance. Biodiversitas 23, 3401-3406. DOI: https://doi.org/10.13057/biodiv/d230712.
Naylor, R.L., Battisti, D.S., Vimoont, D.J., Falcon, W.P., and Burke, M.B. (2007). Assessing risks of climate variability and climate change for Indonesian rice agriculture. PNAS 104, 7752-7757. DOI: https://doi.org/10.1073/pnas.0701825104.
Ndikuryayo, C., Ndayiragije, A., Kilasi, N.L., and Kusolwa, P. (2023). Identification of drought-tolerant rice (Oryza sativa L.) genotypes with Asian and African backgrounds. Plants 12, 1-17. DOI: https://doi.org/10.3390/plants12040922.
Oliveira, R.L., Pinho, R.G.V., Ferreira, D.F., Pires, L.P.M., and Melo, W.M.C. (2014). Selection index in the study of adaptability and stability in maize. The Scientific World Journal 2014,1-6. DOI: https://doi.org/10.1155/2014/360570.
Oo, N.A., Ngwe, K., and Myint, N.O. (2020). Evaluation of drought tolerance for improved rice lines in terms of yield, chlorophyll content, and water use efficiency. International Journal of Environmental and Rural Development 11, 25-31. DOI: https://doi.org/10.1155/2014/360570.
Opalofia, L., Yusniwati, and Swasti, E. (2018). Drought tolerance in some of red rice line based on morphology at vegetative stage. International Journal of Environment, Agriculture and Biotechnology 3, 1995-2000. DOI: https://doi.org/10.22161/ijeab/3.6.6.
Panda, D., Mishra, S.S., and Behere, P.K. (2021). Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science 28, 119-132. DOI: https://doi.org/10.1016/j.rsci.2021.01.002.
Pereira, D.G., Afonso, A., and Medeiros, F.M. (2015). Overview of Friedman’s test and post-hoc analysis. Communications in Statistics-Simulation and Computation 44. DOI: https://doi.org/10.1080/03610918.2014.931971.
Purwoko, B.S., Dewi I.S., and Khumaida, N. (2010). Rice anther culture to obtain double-haploids with multiple tolerances. Asia Pacific Journal of Molecular Biology and Biotechnology 18.
Rajan, J. (2023). “5 Emerging Challenges in Rice Cultivation Faced by Farmers: Organica’s Solutions to High Yield and Crop Management”. https://organicabiotech.com/5-emerging-challenges-in-rice-cultivation-faced-by-farmers-organicas-solutions-to-high-yield-and-crop-management/ [May 15, 2023].
Sabouri, A., Dadras, A.R., Azari, M., Kouchesfahani, A.S., Taslimi, M., and Jalalifar, R. (2022). Screening of rice drought tolerant lines by introducing a new composite selection index and competitive with multivariate methods. Scientific Reports 12, 2163. DOI: https://doi.org/10.1038/s41598-022-06123-9.
Sarwendah, M., Lubis, I., Junaedi, A., Purwoko, B.S., Sopandie, D., and Dewi, A.K. (2022). Application of selection index for rice mutant screening under a drought stress condition imposed at reproductive growth phase. Biodiversitas 23, 5446-5452. DOI: https://doi.org/10.13057/biodiv/d231056.
Shen, C., Zhang, Y., Li, Q., Liu, S., He, F., An, Y., Zhou, Y., Liu, C., Yin, W., and Xia, X. (2021). PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H2O2 production via the direct regulation of PdHXK1 expression in Populus. New Phytologist 230, 1868-1882. DOI: https://doi.org/10.1111/nph.17301.
Singh, C.M., Kumar, B., Mehandi, S., and Chandra, K. (2012). Effect of drought stress in rice: a review on morphological and physiological characteristics. Trends in Biosciences 5.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology 15, 72-101 DOI: https://doi.org/10.2307/1412159.
Sukarman, Mulyani, A., and Purwanto, S. (2018). Modifikasi metode evaluasi kesesuaian lahan berorientasi perubahan iklim. Jurnal Sumberdaya Lahan 12.
Susanto, U., Rohaeni, W.R., and Sasmita, P. (2019). Selecting traits for drought tolerance screening in rice In “The 1st International Conference on Agriculture and Rural Development”, Banten, Indonesia. IOP Conference Series: Earth and Environmental Science 383. DOI: https://doi.org/10.1088/1755-1315/383/1/012049.
Taleb, M.H., Majidi, M.M., Pirnajmedin, F., and Maibody, S.A.M.M. (2023). Plant functional trait responses to cope with drought in seven cool‑season grasses. Scientific Reports 13, 5285. DOI: https://doi.org/10.1038/s41598-023-31923-y.
Taryono, Supriyanta, Basunanda, P., Wulandari, R.A., Nurmansyah, Ambarwati, E., Arsana, I.G.K.D., Aristya, V.E., Purba, A.E., Aisya, A.W., and Alam, T. (2023). Selection of drought-tolerant rice genotypes under cajuput (Melaleuca cajuputi subsp. cajuputi) agroforestry system. Biodiversitas 24, 4791-4802. DOI: https://doi.org/10.13057/biodiv/d240920.
Tirtana, A., Purwoko, B.S., Dewi, I.S., and Trikoesoemaningtiyas. (2021). Selection of upland rice lines in advanced yield trials and response to abiotic stress. Biodiversitas 22, 4694-4703. DOI: https://doi.org/10.13057/biodiv/d221063.
Wang, X., Huang, J., Peng, S., and Xiong, D. (2023). Leaf rolling precedes stomatal closure in rice (Oryza sativa) under drought conditions. Journal of Experimental Botany 74, 6650–6661. DOI: https://doi.org/10.1093/jxb/erad316.
Yang, Y., Guo, Y., Zhong, J., Zhang, T., Li, D., Ba T., Xu T., Chang, L., Zhang, Q., and Sun, M. (2020). Root physiological traits and transcriptome analyses reveal that root zone water retention confers drought tolerance to Opisthopappus taihangensis. Scientific Reports 10, 2627. DOI: https://doi.org/10.1038/s41598-020-59399-0.
Yang, Y., Yu, J., Qian, Q., and Shang, L. (2022). Enhancement of heat and drought stress tolerance in rice by genetic manipulation: a systematic review. Rice 15, 2-18. DOI: https://doi.org/10.1186/s12284-022-00614-z.
Yu, B., Chao, D., and Zhao, Y. (2024). How plants sense and respond to osmotic stress. Journal of Integrative Plant Biology 66, 394-423. DOI: https://doi.org/10.1111/jipb.13622.
Zhang, X., and Amer, P. (2021). A new selection index percent emphasis method using subindex weights and genetic evaluation accuracy. Journal of Dairy Science 104, 5827-5842. DOI: https://doi.org/10.3168/jds.2020-19547.
Zar, J.H. (2005). “Spearman Rank Correlation: Overview in Encyclopedia of Biostatistics”. 2nd ed. John Wiley and Sons. DOI: https://doi.org/10.1002/0470011815.b2a15150.
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.