Diversity of Sweet Corn Canopy Architecture for Intercropping Pattern Suitability with Cayenne Pepper
DOI:
https://doi.org/10.29244/jtcs.12.02.314-326Keywords:
cultivation, genotype, growth, shade stressAbstract
The intercropping system has become increasingly important due to the limited availability of agricultural land and the growing population. Sweet corn is one of the potential crops for intercropping; however, its compatibility with companion plants varies among genotypes. This study analyzed the canopy diversity of 10 sweet corn genotypes and their impact on temperature, humidity, and light intensity. The research was conducted at the Pasir Kuda Experimental Station, Bogor Agricultural University, from June to August 2024, using ten hybrid sweet corn genotypes in a randomized complete block design with three replications. Each genotype was planted in plots measuring 3.75 m², with a 25 cm × 75 cm spacing, resulting in 30 plants per bed. Principal Component Analysis (PCA) and hierarchical analysis identified three clusters of genotypes based on ten morphological traits. The first cluster included “Verona”, “Talenta”, “Paragon”, SM12 x SB13, “Exotic”, and “Secada”. The second cluster consisted of “Arinta”, SB8 x SM6, and SM12 x SM1, while the third cluster included SM1 x SM9. Temperature and humidity measurements revealed significant differences among clusters, influencing photosynthetic efficiency and yield potential. Denser canopies exhibited lower temperatures, higher humidity, and reduced light intensity, whereas more open canopies displayed higher temperatures, lower humidity, and increased light intensity. The study also analyzed cob weight, length, and diameter, as well as critical factors for yield potential and photosynthetic efficiency. Based on the results, genotypes with denser canopies from Cluster One (“Verona”, “Talenta”, “Paragon”, SM12 x SB13, “Exotic”, and “Secada”) are recommended for intercropping with cayenne peppers due to their favourable microclimate compatibility.
References
Ahmad, A., Radovich, T.J.K., and Hue, N.V. (2015). Effect of intercropping three legume species on growth and yield of sweet corn (Zea mays) in Hawaii. Journal of Crop Improvement 29, 370–378. DOI: http://doi.org/10.1080/15427528.2015.1041666
Alemayehu, A., Tamado, T., Nigussie, D., Yigzaw, D., Kinde, T., and Wortmann, C.S. (2017). Maize-common bean intercropping to optimize maize-based crop production. Journal of Agricultural Science 155, 1124–1136. DOI: http://doi.org/10.1017/S0021859617000193.
Azrai, M., Efendi, R., Muliadi, A., Aqil, M., Suwarti., Zainuddin, B., Syam, A., Junaedi., Syah, U.T., Dermail, A., Marwiyah, S., and Suwarno, W.B. (2022). Genotype by environment interaction on tropical maize hybrids under normal irrigation and waterlogging conditions. Frontiers in Sustainable Food Systems 6, 1-13. DOI: http://doi.org/10.3389/fsufs.2022.913211.
Evers, J.B., Van, D.W.W., Stomph, T.J., Bastiaans, L., Anten, N.P.R. (2019). Understanding and optimizing species mixtures using functional–structural plant modeling. Journal of Experimental Botany 70, 2381-2388. DOI: http://doi.org/10.1093/jxb/ery288
Ferrante, A., and Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low temperature values, light intensity, and relative humidity. Horticulturae 4. DOI: http://doi.org/10.3390/horticulturae4030021.
Feng, G., Luo, H., Zhang, Y., Gou, L., Yao, Y., Lin, Y., and Zhang, W. (2016). Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.). Crop Journal 4, 499–508. DOI: http://doi.org/10.1016/j.cj.2016.05.012.
Fitrah, A.N., Carsono, N., and Ruswandi, D. (2022). Komparasi daya hasil dan toleransi genotipe jagung padjadjaran pada naungan (Eucalyptus sp). Kultivasi 21. DOI: http://doi.org/10.24198/kultivasi.v21i1.33452.
Gao, J., Liu, Z., Zhao, B., Dong, S., Liu, P., and Zhang, J. (2020). Shade stress decreased maize grain yield, dry matter accumulation, and nitrogen uptake. Agronomy Journal 112, 2768–2776. DOI: http://doi.org/10.1002/agj2.20140.
García-Gaytán, V., Gómez-Merino, F.C., Trejo-Téllez, L.I., Baca-Castillo, G.A., and García-Morales, S. (2017). The chilhuacle chili (Capsicum annuum L.) in Mexico: description of the variety, its cultivation, and uses. International Journal of Agronomy 1, 1-14. DOI: http://doi.org/10.1155/2017/5641680.
Indriani, R., Darma, R., Musa, Y., Tenriawaru, A.N., and Arsyad, M. (2020). Policy design of cayenne pepper supply chain development. Bulgarian Journal of Agricultural Science 26, 499-506.
Issukindarsyah., Sulistyaningsih, E., Indradewa, D., Putra, E.T.T. (2020). The growth of three varieties of black pepper (Piper nigrum) under different light intensities is related to the role of indigenous hormones. Biodiversitas 21 (5), 1778-1785. DOI: http://doi.org/10.13057/biodiv/d210502.
Jafarzadegan, M., Safi-Esfahani, F., and Beheshti, Z. (2019). Combining hierarchical clustering approaches using the principal component analysis method. Expert Systems with Applications 137, 1–10. DOI: http://doi.org/10.1016/j.eswa.2019.06.064.
Jeeatid, N., Techawongstien, S., Suriharn, B., Bosland, P.W., and Techawongstien, S. (2017). Light intensity affects capsaicinoid accumulation in hot pepper (Capsicum chinense) cultivars. Horticulture Environment and Biotechnology 58, 103–110. DOI: http://doi.org/10.1007/s13580-017-0165-6.
Kartahadimaja, J., and Syuriani, E.E. (2021). Test of newness, uniformity, and uniqueity of 11 polinela hybrid corn lines. Earth and Environmental Science 1012, 1-8. DOI: http://doi.org/10.1088/1755-1315/1012/1/012010.
Kinyua, M.W., Kihara, J., Bekunda, M., Bolo, P., Mairura, F.S., Fischer, G., and Mucheru-Muna, M.W. (2023). Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania. Agricultural Systems 205, 1-13. DOI: http://doi.org/10.1016/j.agsy.2022.103589.
Kwack, Y., An, S., Kim, S. K. (2021). Development of growth model for grafted hot pepper seedlings as affected by air temperature and light intensity. Sustainability 13. DOI: http://doi.org/10.3390/su13115895.
Li, L., Zou, Y., Wang, Y., Chen, F., and Xing, G. (2022). Effects of corn intercropping with soybean/peanut/millet on the biomass and yield of corn under fertilizer reduction. Agriculture 12, 1-23. DOI: http://doi.org/10.3390/agriculture12020151.
Li, T., Rezaeipanah, A., and Tag-El-Din, E.S.M. (2022). An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. Journal of King Saud University - Computer and Information Sciences 34, 3828–3842. DOI: http://doi.org/10.1016/j.jksuci.2022.04.010.
Liang, X.G., Gao, Z., Shen, S., Paul, M.J., Zhang, L., Zhao, X., Lin, S., Wu, G., Chen, X.M., and Zhou, S.L. (2020). Differential ear growth of two maize varieties to shading in the field environment: effects on whole plant carbon allocation and sugar starvation response. Journal of Plant Physiology 251, 1-11. DOI: http://doi.org/10.1016/j.jplph.2020.153194.
Liu, H., Fu, Y., Hu, D., Yu, J., and Hong, L. (2018). Effect of green, yellow, and purple radiation on biomass, photosynthesis, morphology, and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Scientia Horticulturae 236, 10-17. DOI: http://doi.org/10.1016/j.scienta.2018.03.027.
Liu, D., Ning, Q., Zhai, L., Teng, F., Li, Y., Zhao, R., Xiong, Q., Zhan, J., Li, Z., Yang, F., Zhang, Z., and Liu, L. (2024). Coordinated control for the auricle asymmetric development by ZmIDD14 and ZmIDD15 fine-tunes the high-density planting adaptation in maize. Plant Biotechnology Journal 1, 1-13. DOI: http://doi.org/10.1111/pbi.14382.
Liu, Y., Dawson W., Prati, D., Haeuser, E., Feng, Y., Kleumen, M. V. (2016). Does greater specific leaf area plasticity help plants maintain high performance when shaded? Annals of Botany 118, 1329-1336. DOI: http://doi.org/10.1093/aob/mcw180.
Liu, Z., Zhao, M., Zhang, H., Ren, T., Liu, C., and He, N. (2023). Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology 29 (4), 1144–1159. DOI: http://doi.org/10.1111/gcb.16518.
Masabni, J., Sun, Y., Niu, G., and Del Valle, P. (2016). Shade effect on the growth and productivity of tomato and chili pepper. Horttechnology 26 (3), 344-350. DOI: http://doi.org/10.21273/horttech.26.3.344.
Pascale, S., Nguyen, G.N., Lantzke, N., and Van Burgel, A. 2022. Effects of shade nets on microclimatic conditions, growth, fruit yield, and quality of eggplant (Solanum melongena L.). A Case Study in Carnarvon, Western Australia 8, 1-15. DOI: http://doi.org/10.3390/horticulturae.
Paut, R., Garreau, L., Ollivier, G., Sabatier, R., and Tchamitchian, M. (2024). A global dataset of experimental intercropping and agroforestry studies in horticulture. Scientific Data 11. DOI: http://doi.org/10.1038/s41597-023-02831-7.
Peter, B.M. (2022). A geometric relationship of F2, F3, and F4 statistics with principal component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 377, 1-14. DOI: http://doi.org/10.1098/rstb.2020.0413.
Raza, M.A., Feng, L.Y., van der Werf, W., Cai, G.R., Khalid, M.H., Bin., Iqbal, N., Hassan, M.J., Meraj, T.A., Naeem, M., Khan, I., Rehman, S., Ansar, M., Ahmed, M., Yang, F., and Yang, W. (2019). A narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in the relay-intercropping system. Food and Energy Security 8, 1-12. DOI: http://doi.org/doi.org/10.1002/fes3.170.
Rosmaina., Ridho, A., and Zulfahmi. (2022). Response of morpho-physiological traits to drought stress and screening of curly pepper (Capsicum annuum) genotypes for drought tolerance. Biodiversitas 23, 5469–5480. DOI: http://doi.org/10.13057/biodiv/d231059.
Sa’adah, F. L., Kusmiyati, F., and Anwar, S. (2022). Karakterisasi keragaman dan analisis kekerabatan berdasarkan sifat agronomi jagung berwarna (Zea mays L.). Jurnal Ilmiah Pertanian 19. DOI: http://doi.org/10.31849/jip.v19i2.9768.
Samanta, M., P. Hazra. (2019). Microclimate suitability for green and coloured sweet pepper hybrids in open and protected structures in the sub-tropical humid climate of West Bengal. Journal of Agrometeorology 21.
Shafiq, I., Hussain, S., Raza, M.A., Iqbal, N., Asghar, M.A., Raza, A., Fan, Y.F., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W.Y., and Yang, F. (2021). Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture 20, 4–23. DOI: http://doi.org/10.1016/S2095-3119(20)63227-0.
Siahaan, G.F., Chozin, M.A., Syukur, M., and Ritonga, A.W. (2023). Estimation of genetic parameters and variability of various cayenne peppers under net shading. Biodiversitas 24, 5912–5919. DOI: http://doi.org/10.13057/biodiv/d241109.
Sirih, S., Tilaar, W., Wanget, S., Pongo, J., Karouw, S., and Azrai, M. (2021). Optimization of hybrid corn seed production in pollination systems at various parent seed planting ratios. Earth and Environmental Science 911, 1-12. DOI: http://doi.org/10.1088/1755-1315/911/1/012084.
Stiegel, S., Entling, M.H., and Mantilla-Contreras, J. (2017). Reading the leaves’ palm: Leaf traits and herbivory along the microclimatic gradient of forest layers. Plos One 12, 1-17. DOI: http://doi.org/10.1371/journal.pone.0169741.
Susanti, E.D., Chozin, M.A., Ritonga, A.W., and Sulistyowati, D. (2023). Identification of morpho-physiological and yield traits of sweet corn hybrids at various shade levels. Journal of Sustainable Agriculture 38, 327–338. DOI: http://doi.org/10.20961/carakatani.v38i2.73567.
Tuhina-Khatun, M., Hanafi, M.M., Yusop, M.R., Wong, M.Y., Salleh, F.M., Ferdous, J. (2015). Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. BioMed Research International 2015. DOI: http://doi.org/10.1155/2015/290861
Tripathi, S.C., Venkatesh, K., Meena, R.P., Chander, S., and Singh, G.P. (2021). Sustainable intensification of maize and wheat cropping systems through pulse intercropping. Scientific Reports 11, 1-10. DOI: http://doi.org/10.1038/s41598-021-98179-2.
Utari, V.F., Chozin, M.A., Hapsari, D.P., and Ritonga, A.W. (2023). Morphophysiological responses and tolerance of various sweet corn (Zea mays L.) hybrids to shade stress. Biodiversitas 24, 4438–4447. DOI: http://doi.org/10.13057/biodiv/d240825.
Wang, X., Shen, L., Liu, T., Wei, W., Zhang, S., Li, L., and Zhang, W. (2022). Microclimate, yield, and income of a jujube–cotton agroforestry system in Xinjiang, China. Industrial Crops and Products 182, 1-13. DOI: http://doi.org/10.1016/j.indcrop.2022.114941.
Waqas, M.A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., and Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. In Frontiers in Plant Science 10. DOI: http://doi.org/10.3389/fpls.2019.01336.
Xu, Z., Li, C., Zhang, C., Yu, Y., van der Werf, W., and Zhang, F. (2020). Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research 246, 1-11. DOI: http://doi.org/10.1016/j.fcr.2019.107661
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.